kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Decellularized liver extracellular matrix as a 3D scaffold for bioengineering applications
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The increasing global burden of end-stage liver disease has increased the need for liver transplantation, the definitive cure. However, there is a huge discrepancy between the number of available organ donors and the number of patients waiting for transplantation, resulting in the deaths of a significant number of patients on the waiting list as only 10% of the global need for transplantation is met. Liver tissue engineering is a promising alternative solution to this problem, which utilizes bioengineering techniques to create an ex vivo microenvironment niche for liver cells embedded in a liver-specific extracellular matrix (ECM) for cell growth and function. Despite many advances in this field, the scarcity of appropriate ECM-mimicking biomaterials with good mechanical properties for biofabrication technique remains limited. To address this, different biofabrication techniques, such as bioprinting and biomaterial scaffolds, are studied to simulate liver microarchitecture for different applications. This thesis presents the development and application of a decellularized liver extracellular matrix hydrogel combined with the liver cell line HepG2 (papers 1-3). It also focuses on the decellularized whole liver scaffold to differentiate amniotic epithelial cells (paper 4). The decellularized liver extracellular matrix (dLM) is a cell-free scaffold that retains liver-specific components to direct cell growth and functions. The dLM can be digested to form hydrogel for 3D bioprinting applications, or it can be used as a biomaterial scaffold to seed the cells directly. In paper I, porcine dLM hydrogel was modified with gelatin and a PEG-based crosslinker to induce a cytocompatible gelation mechanism to generate a robust bioink with a 16-fold increment in viscosity and a 32-fold increment in storage modulus as compared to unmodified dLM hydrogel. This work established the application of dLM with other biofabrication methods, such as Indirect bioprinting, where a sacrificial biopolymer is 3D printed, and the scaffold material is subsequently added. In paper II, a 3D-printed polyvinyl alcohol framework resembling the liver lobules was used as a sacrificial scaffold to impart its structure to the dLM hydrogel modified with PEG-based crosslinker and mushroom tyrosinase. The crosslinked dLM hydrogel with co-culture of HepG2 and NIH 3T3 fibroblasts cell line retained the structure of PVA to create a scaled-up liver-like microarchitecture with lobules. The PVA dissolved with cell culture media leaving behind a robust 3D construct of dLM hydrogel. In paper III, cellulose nanofibril-coated HepG2 spheroids incorporating dLM hydrogel were studied for tumor modeling. The dLM incorporation affected the spheroid formation and growth depending on the time of addition. In paper IV, the functional differentiation of amniotic epithelial cells into hepatocyte-like cells was performed in a decellularized rat liver scaffold in a perfusion bioreactor with dynamic oxygenation and media exchange. This dLM perfusion technology supported the maturation and proliferation of amniotic epithelial cells into hepatocyte-like cells. This is a preliminary step into developing a liver-like organ model in a laboratory setting. 

To conclude, this thesis presents different bioengineering approaches, such as 3D bioprinting and perfusion decellularization, to study the 3D dLM scaffolds for HepG2 and amniotic epithelial cell culture. 3D bioprinting technique utilized a robust dLM hydrogel to create a scaled-up microarchitecture, whereas perfusion decellularization retained the natural 3D architecture of the whole liver ECM and the native vascular system for recellularizing the scaffold with stem cells. We successfully modified and characterized the dLM hydrogel to enhance its printability to develop complex structures such as liver lobules and microchannels. We utilized different cell systems, including monoculture, co-culture, and spheroids, to analyze the biocompatibility, cell proliferation, and liver-specific functions of the dLM scaffold. Ultimately, the advancement of dLM as a biomaterial presented in this thesis could improve the application and modification of various decellularized tissues to generate larger-scale models for in vitro testing and organ transplantation.

Abstract [sv]

Den global ökningen av skrumplever, eller levercirros, har ökat behovet av levertransplantationer, det definitiva botemedlet. Det finns dock en stor skillnad mellan antalet organdonatorer och antalet patienter som väntar på transplantation. Detta leder till att många patienter på väntelistan dör i väntan på transplantation, eftersom endast 10 % behovet tillgodoses. Vävnadsrekonstruktion av levervävnad erbjuder en alternativ lösning på detta problem, som använder bioteknik för att skapa en rätt mikromiljö för levercellergenom att bädda in dem i en leverspecifik s.k extracellulär matris (ECM). Trots många framsteg är tillgången på lämpliga ECM-liknande biomaterial med goda mekaniska egenskaper för vävnadsrekonstruktion fortfarande begränsad. Därför har vi studerat olika biotekniska tillverkningsmetoder, t ex bioprinting och ramverk av biomaterial för att simulera leverns mikroarkitektur. 

Denna avhandling presenterar utvecklingen och tillämpningen av ett gelmaterial tillverkat av extracellulär matrix från lever (artikel 1-3) kombinerat med levercellinjen HepG2 (artikel 4) eller leverliknande celler, för vävnadsrekonstruktion. Efter att levercellerna avlägsnats behåller leverns extracellulära matrix (dLM) leverspecifika komponenter som kan styra celltillväxt och funktioner. I 3D bioprinting kan en robust dLM-baserad hydrogel användas för att skapa en leverliknande mikroarkitektur. Dessutom bibehålls den naturliga 3D-arkitekturen och kärlstrukturen hos leverns ECM och kan inympas med önskvärda celler. I artikel I modifierades dLM-hydrogel från gris med gelatin och en PEG-baserad tvärbindare för att resultera i ett robust biobläck för 3D utskrifter med en goda mekaniska egenskaper, jämfört med omodifierad dLM hydrogel. Detta arbete etablerade användningen av dLM för nya tillverkningsmetoder för utskriven vävnad t ex Indirekt bioprinting, där en offer-biopolymer 3D-printas och vävnads-ramverket därefter läggs till. I artikel II användes ett 3D-utskrivet ramverk av polyvinylalkohol som tillfällig gjutform för en modifierad dLM-hydrogel. dLM-hydrogelen stelnade på PVA-strukturen, där lever- och fibroblastceller kunde odlas. PVAt löstes upp när cellodlingsmedia tillsattes, och lämnade efter sig en rekonstruerad vävnadsstruktur. I artikel III studerades en nanocellulosabelagd sfäroidmodell av lever- och tjocktarms celler innehållande dLM för läkemedelsscreening. I artikel IV utfördes den funktionella differentiering av stamceller från fostervatten till lever-liknande celler i ett vävnadsramverk från råtta i en perfusionsbioreaktor med dynamisk syresättning och mediautbyte.

Sammanfattningsvis presenterar denna avhandling olika biotekniska metoder såsom 3D bioprinting och perfusionsdecellularisering, för att studera 3D ramverk för vävnadsrekonstruktion av dLM, och odling av celler i dessa. Vi har framgångsrikt modifierat och karakteriserat dLM-hydrogelen för att förbättra dess 3D utskriftsegenskaper i komplexa strukturer som leverlobuli och mikrokanaler. Vi använde olika cellsystem inklusive monokultur, samodling och sfäroider för att karakterisera celltillväxt och leverspecifika funktioner i dLM-ramverket. Utvecklingen av dLM som biomaterial att kommer att öka förutsättningarna för vävnadsrekonstuktion för att skapa uppskalade organmodeller för läkemedelstestning och organtransplantation.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. , p. 91
Series
TRITA-CBH-FOU ; 2022:59
Keywords [en]
liver decellularization, decellularized liver matrix bioink, bioprinting, sacrificial scaffold, viscoelasticity, bioengineering, tumor modeling, stem cell differentiation, bioreactor
National Category
Biomaterials Science Engineering and Technology Biological Sciences
Research subject
Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-321180ISBN: 978-91-8040-421-1 (electronic)OAI: oai:DiVA.org:kth-321180DiVA, id: diva2:1709206
Public defence
2022-12-02, Karolina, Widerströmska huset, Tomtebodavägen 18a, via Zoom: https://kth-se.zoom.us/j/69659607478, Solna, 10:00 (English)
Opponent
Supervisors
Note

QC 2022-11-08

Available from: 2022-11-08 Created: 2022-11-08 Last updated: 2022-11-29Bibliographically approved
List of papers
1. 3D Bioprinting of Multi-Material Decellularized Liver Matrix Hydrogel at Physiological Temperatures
Open this publication in new window or tab >>3D Bioprinting of Multi-Material Decellularized Liver Matrix Hydrogel at Physiological Temperatures
Show others...
2022 (English)In: Biosensors, ISSN 2079-6374, Vol. 12, no 7, article id 521Article in journal (Refereed) Published
Abstract [en]

Bioprinting is an acclaimed technique that allows the scaling of 3D architectures in an organized pattern but suffers from a scarcity of appropriate bioinks. Decellularized extracellular matrix (dECM) from xenogeneic species has garnered support as a biomaterial to promote tissue-specific regeneration and repair. The prospect of developing dECM-based 3D artificial tissue is impeded by its inherent low mechanical properties. In recent years, 3D bioprinting of dECM-based bioinks modified with additional scaffolds has advanced the development of load-bearing constructs. However, previous attempts using dECM were limited to low-temperature bioprinting, which is not favorable for a longer print duration with cells. Here, we report the development of a multi-material decellularized liver matrix (dLM) bioink reinforced with gelatin and polyethylene glycol to improve rheology, extrudability, and mechanical stability. This shear-thinning bioink facilitated extrusion-based bioprinting at 37 degrees C with HepG2 cells into a 3D grid structure with a further enhancement for long-term applications by enzymatic crosslinking with mushroom tyrosinase. The heavily crosslinked structure showed a 16-fold increase in viscosity (2.73 Pa s(-1)) and a 32-fold increase in storage modulus from the non-crosslinked dLM while retaining high cell viability (85-93%) and liver-specific functions. Our results show that the cytocompatible crosslinking of dLM bioink at physiological temperatures has promising applications for extended 3D-printing procedures.

Place, publisher, year, edition, pages
MDPI AG, 2022
Keywords
decellularized liver matrix bioink, bioprinting at physiological temperatures, cytocompatible crosslinking, robust bioink, viscoelasticity
National Category
Biological Sciences
Identifiers
urn:nbn:se:kth:diva-316289 (URN)10.3390/bios12070521 (DOI)000832394600001 ()35884324 (PubMedID)2-s2.0-85136255581 (Scopus ID)
Note

QC 20220812

Available from: 2022-08-12 Created: 2022-08-12 Last updated: 2023-05-10Bibliographically approved
2. Indirect 3D Bioprinting of a Robust Trilobular Hepatic Construct with Decellularized Liver Matrix Hydrogel
Open this publication in new window or tab >>Indirect 3D Bioprinting of a Robust Trilobular Hepatic Construct with Decellularized Liver Matrix Hydrogel
Show others...
2022 (English)In: Bioengineering, E-ISSN 2306-5354, Vol. 9, no 11, p. 603-603Article in journal (Refereed) Published
Abstract [en]

The liver exhibits complex geometrical morphologies of hepatic cells arranged in a hexagonal lobule with an extracellular matrix (ECM) organized in a specific pattern on a multi-scale level. Previous studies have utilized 3D bioprinting and microfluidic perfusion systems with various biomaterials to develop lobule-like constructs. However, they all lack anatomical relevance with weak control over the size and shape of the fabricated structures. Moreover, most biomaterials lack liver-specific ECM components partially or entirely, which might limit their biomimetic mechanical properties and biological functions. Here, we report 3D bioprinting of a sacrificial PVA framework to impart its trilobular hepatic structure to the decellularized liver extracellular matrix (dLM) hydrogel with polyethylene glycol-based crosslinker and tyrosinase to fabricate a robust multi-scale 3D liver construct. The 3D trilobular construct exhibits higher crosslinking, viscosity (182.7 ± 1.6 Pa·s), and storage modulus (2554 ± 82.1 Pa) than non-crosslinked dLM. The co-culture of HepG2 liver cells and NIH 3T3 fibroblast cells exhibited the influence of fibroblasts on liver-specific activity over time (7 days) to show higher viability (90–91.5%), albumin secretion, and increasing activity of four liver-specific genes as compared to the HepG2 monoculture. This technique offers high lumen patency for the perfusion of media to fabricate a densely populated scaled-up liver model, which can also be extended to other tissue types with different biomaterials and multiple cells to support the creation of a large functional complex tissue.

Place, publisher, year, edition, pages
MDPI AG, 2022
National Category
Biomaterials Science Gastroenterology and Hepatology
Identifiers
urn:nbn:se:kth:diva-321147 (URN)10.3390/bioengineering9110603 (DOI)000881052100001 ()36354514 (PubMedID)2-s2.0-85141701251 (Scopus ID)
Funder
Swedish Research Council, 2015-05378Swedish Research Council, 2019-05170European Commission, 610472
Note

QC 20221108

Available from: 2022-11-07 Created: 2022-11-07 Last updated: 2025-02-11Bibliographically approved
3. Layer-by-Layer cellulose nanofibril coating for spheroid formation combined with decellularized extracellular matrix for 3D tumor modeling
Open this publication in new window or tab >>Layer-by-Layer cellulose nanofibril coating for spheroid formation combined with decellularized extracellular matrix for 3D tumor modeling
(English)Manuscript (preprint) (Other academic)
National Category
Pharmacology and Toxicology
Identifiers
urn:nbn:se:kth:diva-321149 (URN)
Note

QCR 20221108

Available from: 2022-11-07 Created: 2022-11-07 Last updated: 2022-11-08Bibliographically approved
4. Liver extracellular matrix and perfusion bioreactor culture promoting human amnion epithelial cell differentiation towards hepatocyte-like cells
Open this publication in new window or tab >>Liver extracellular matrix and perfusion bioreactor culture promoting human amnion epithelial cell differentiation towards hepatocyte-like cells
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Gastroenterology and Hepatology
Identifiers
urn:nbn:se:kth:diva-321150 (URN)
Note

QCR 20221108

Available from: 2022-11-07 Created: 2022-11-07 Last updated: 2025-02-11Bibliographically approved

Open Access in DiVA

Vamakshi thesis kappa(21350 kB)1614 downloads
File information
File name FULLTEXT01.pdfFile size 21350 kBChecksum SHA-512
70619bd140c4a4520667cbfb7ea6dedc9553b3751a902686e30870ff423c8b2b954ec9a03035cce541c0a9a5299968f59e424514ef845e60b0f6b8f08c22ee4a
Type fulltextMimetype application/pdf

Authority records

Khati, Vamakshi

Search in DiVA

By author/editor
Khati, Vamakshi
By organisation
Nano BiotechnologyScience for Life Laboratory, SciLifeLab
Biomaterials ScienceEngineering and TechnologyBiological Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 1636 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2294 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf