kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Physics-Informed Deep Learning Framework for Solving Inverse Problems in Epidemiology
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Optimization and Systems Theory.
2022 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

This thesis develops and evaluates a physics-informed neural network (PINN) modelling framework for solving inverse problems in epidemiology. The PINN works by modifying the standard mean squared error loss function of the neural network, by adding a term penalizing deviations from a given compartmental model's system of ordinary differential equations. To find estimates for the unknown parameters in the compartmental model, such as the transmission rate, this compound loss function is then minimized with respect to both the neural network's inherent parameters and the unknown parameters in the compartmental model. The following question guided the study: Given time-series data consisting of the 7-day rolling average of the daily incidence of new infectious individuals, and a compartmental model for that data, can a PINN learn the corresponding time-dependent transmission rate parameter? The PINN framework was first validated on simulated (synthetic) epidemiological data, where the PINN was tasked o retrieve the unknown parameters in a given three-compartment SIR (Susceptible-Infectious-Recovered) model. It was then tested on real Covid-19 case data, and tasked to retrieve a time-dependent transmission rate parameter in an SEIR (Susceptible-Exposed-INfectious-Recovered) model. Two different approaches to learning a time-dependent transmission rate based were compared: one assumed a sigmoidal transmission rate with three unknown parameters (model IIa); the other allowed the transmission rate to be aprameterized by the neural netowrk, by adding it as an additional output node (Model IIb). The findings were that the PINN was able to reliably retrieve unknown constant parameters in an SIR model based on simulated data. However, it was also found that the PINN's parameter estimates can be sensitive to noise. Moreover, when learning a time-dependent transmission rate with Model IIb, an important finding was that the PINN would struggle to converge to the true transmission rate in regions of time when there were a relatively low number of total infections. Nevertheless, when employed on Covid-19 data from Stockholm county corresponding to the first wave, the PINN was still able to extract a time-dependent transmission rate in the given SEIR model, largely consistent with the 7-day rolling average of the incidence of new cases, without imposing any a priori assumptions on the shape of the transmission rate other than it should be positive.

Abstract [sv]

I den här studien utvecklas och utvärderas ett modelleringsramverk, som drar nytta av fysikinformerade neurala nätverk (PINN), för lösning av inversa problem inom epidemiologi. I en PINN modifieras den sedvanliga lossfunktionen genom att en term läggs till som straffar avvikelser from en given fackmodells system av differentialekvationer. Genom att minimera denna sammansatta lossfunktion med avseende på både det neurala nätverkets inneboende parametrar och de okända epidemiologiska parametrarnarna i fackmodellen, såsom graden av infektivitet, är förhoppningen att PINNen ska kunna skatta de epidemiologiska parametrarna. Följande forskningsfråga ledde studien: "givet ett 7-dagars rullande medelvärde av den dagliga incidensen av nya bekräftade infekterade fall, och en fackmodell för att beskriva denna data, kan en PINN lära sig en tidsberoende infektivitet i fackmodellen som överstämmer med datan"? PINN-ramverket validerades för på simulerad (syntetisk) epidemiologisk data, där PINNen fick i uppdrag att hitta de okända parametrarna i en given fackmodell med tre fack: SIR (Susceptible-Infectious-Recovered). Det testades därefter på riktig Covid-19 data, med uppdraget att hitta en tidsberoende infektivitetsparameter i en SEIR (Susceptible-Exposed-Infectious-Recovered) modell. Två olika tillvägagångssätt för att lära sig den tidsberoende infektiviteten jämfördes: den ena använde en sigmoid-ansats med tre okända parametrar (Model IIa); den andra tillät det neurala nätverket att parametrisera infektiviteten, genom att lägga till den som en extra komponent i nätverkets utsignal. Resultaten visade att en PINN tillförlitlig kunde identifiera de okända, konstanta, parametrarna i en SIR_modell, men att skattningarna kunde vara känsliga för brus i datan. När Modell IIb användes upptäcktes även att PINNen kunde få svårt att konvergera mot den sanna infektiviteten vid tider då det fanns relativt få totalt infekterade. Trots dessa svårigheter kunde Modell IIb identifiera en tidsberoende infektivitet för en given fackmodell som var konsistent med ett 7-dagars rullande medelvärde an incidensen av nya fall, utan att påtvinga några a priori antaganden om formen på infektiviteten, annat än att den skulle vara positiv.

Place, publisher, year, edition, pages
2022.
Series
TRITA-SCI-GRU ; 2022:270
National Category
Computational Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-321233OAI: oai:DiVA.org:kth-321233DiVA, id: diva2:1709501
External cooperation
Folkhälsomyndigheten
Subject / course
Optimization and Systems Theory
Educational program
Master of Science - Applied and Computational Mathematics
Supervisors
Examiners
Available from: 2022-11-10 Created: 2022-11-09 Last updated: 2022-11-10Bibliographically approved

Open Access in DiVA

fulltext(2429 kB)1247 downloads
File information
File name FULLTEXT01.pdfFile size 2429 kBChecksum SHA-512
7d2da05b184edc7f159205732b2491dd3901ca0a2ac097535a15fb02a2295448bd65e5bd451ac73d589555385836492f6717392114d9a63cafa1c9699ab8e5b8
Type fulltextMimetype application/pdf

By organisation
Optimization and Systems Theory
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 1251 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1611 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf