kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling characteristic depressed semicircle in electrochemical impedance spectra
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0001-5768-7630
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We present a mathematical model that simulates characteristic depressed-shaped semicircle arc in electrochemical impedance spectra. Depressed semicircle describes the skewing of a perfect semicircle arc in impedance Nyquist plots, when faradaic impedance is in parallel with non-faradaic double layer charging. The model is based on partial differential equations, which describe the lithium intercalation reaction, double layer current and a local particle surface resistance. The model includes two different features, i.e. the distribution of double layer capacitance and current distribution effects, which lead to the depression of the semicircle shape in Nyquist plots in different frequency range. A Gaussian log-normal distribution is used to distribute the double layer capacitance. The ionic resistance and electrochemical active specific surface area determine the current distribution. The model fits to the experimental impedance measurements of calendar- and cycle-aged silicon-graphite electrodes, and enable extraction of electrode kinetic parameters.

National Category
Chemical Process Engineering
Research subject
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-321245OAI: oai:DiVA.org:kth-321245DiVA, id: diva2:1709809
Note

QC 20221114

Available from: 2022-11-09 Created: 2022-11-09 Last updated: 2022-11-14Bibliographically approved
In thesis
1. Lithium-ion battery models for performance and aging
Open this publication in new window or tab >>Lithium-ion battery models for performance and aging
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The demand for lithium-ion batteries (LiBs) is increasing at an exponential rate, so is the need to understand their behaviors and properties.In this pursuit, models are useful tools for improving cell design,quality, control system, keeping track of performance, aging andlifetime. The pseudo two-dimensional (P2D) model and its reduction,single particle model (SPM), are the cornerstone of LiBs’ physics-basedmodel. They entail properties that relate directly to battery’s behaviors.The P2D model and SPM are generally applicable, but lack themathematical description of specific physical phenomena. As such,model extensions are required to capture additional phenomena.

This work outlines the modeling approach for specific processes like mechanical stress, capacitance and current distribution, and aging. Slow processes like solid lithium diffusion and particle mechanical stress are studied for pulse polarization and relaxation. Fast processes like charge transfer and double layer charging play an important role in addressing the behavior of depressed-shaped semicircle arcs in impedance Nyquist plot.

Aging under two types of cycling conditions is investigated, namely high voltage and partial cycling. The conditions target the different performance requirements for LiBs in electric vehicle and stationary energy storage system markets. Electrode properties and aging parameters are extracted. A dynamic lifetime model studies solid electrolyte interface and particle cracking in commercial cells, then predicts the remaining useful life.

Physics-based models and their extended versions contain many parameters.It is unlikely that all parameters are known. Therefore,parametrization is implemented to extract unknown values. In this thesis, parametrization combines electrochemical data and extended models. Electrode’s physical, aging and lifetime parameters are extracted from experimental characterization tests.

Abstract [sv]

I takt med att efterfrågan på litiumjon-batterier (LiB) ökar, ökar även behovet av att förstå deras beteenden och egenskaper. I denna strävan är modeller användbara verktyg för att förstå och förbättra celldesign, kvalitet, kontrollsystem, prestanda, åldrande och livslängd. Den pseudo-tvådimensionella (P2D) modellen och dess reduktion, enpartikelmodellen (SPM), är hörnstenar bland fysikbaserade modeller för LiBs. De har egenskaper som direkt relaterar till fysikaliska fenomen i batterier. P2D-modellen och SPM är allmänt tillämpliga, men beskriver inte vissa fenomen. Därför krävs utökade modeller för att fånga ytterligare fenomen.

Detta arbete beskriver modelleringsmetoden för specifika processer som mekanisk stress, kapacitans och strömfördelning samt åldring. Långsamma processer som diffusion av litium och mekaniska partikelspänningen studeras för pulspolarisering och -avslappning. Snabba processer som dubbellagerkapacitans och strömfördelning spelar en viktig roll för att förklara de nedtryckta halvcirkelbågarna som uppträder när impedans visas i Nyquist-diagram.

Åldrande vid två typer av cyklingsstrategier undersöks, nämligen högspänning och partiell cykling. Strategierna riktar in sig på olika prestandaprioriteringar för elfordon och stationära energilagringssystem. Förutom elektrodegenskaper erhålls åldringsparametrar. En dynamisk livslängdsmodell används för att studera fasta elektrolytgränssnitt och partikelsprickbildning i kommersiella celler och förutsäger sedan den återstående livslängden.

Fysikbaserade modeller och deras utökade versioner innehåller många parametrar. Eftersom det är osannolikt att alla parametervärden är kända implementeras parametrisering för att extrahera okända värden. Parametrisering, i denna avhandling, kombinerar elektrokemiska data och utökade modeller. Parametrar för elektrodens fysikaliska egenskaper, samt åldrande och livslängd, extraheras från experimentella karakteriseringstester.

Place, publisher, year, edition, pages
Kungliga Tekniska högskolan, 2022. p. 75
Series
TRITA-CBH-FOU ; 2022:56
Keywords
Lithium-ion batteries, pseudo two-dimensional model, model extension, parametrization, aging, lifetime
National Category
Chemical Engineering
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-321247 (URN)978-91-8040-408-2 (ISBN)
Public defence
2022-12-08, F3, Lindstedtsvägen 26, zoom: https://kth-se.zoom.us/meeting/register/u5Uvduivqz0sHtIK57hWG26bv-5Fe7OaTRLU, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2022-11-10

Available from: 2022-11-10 Created: 2022-11-09 Last updated: 2022-11-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Ko, Jing Ying

Search in DiVA

By author/editor
Ko, Jing Ying
By organisation
Applied Electrochemistry
Chemical Process Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 332 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf