kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hybrid energy storage systems: Capacity optimization and environmental implication of hybrid energy storage systems in renewable power systems
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.ORCID iD: 0000-0002-0206-6631
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Electricity production contributes a large share of greenhouse gas emissions that lead to climate change. At present, power generation in many parts of the world still heavily depends on fossil fuels. To prevent global warming, the electricity sector is supposed to transition from the current fuel mix to renewable energy sources. Renewable power systems, which are sustainable and environmentally friendly, have the potential to satisfy our electricity consumption. Wind power and solar power increased rapidly in the past decade, however, they only accounted for about 10% of the global annual electricity production in 2021. The main barrier to wind and solar power is variability, which brings a severe challenge to conventional power systems. The power grid needs to constantly maintain the supply-demand balance due to a lack of energy storage. 

Energy storage affects every aspect of power systems from generation to consumption and brings great benefits to renewable energy resources and power grids, such as energy time-shifting, improving power quality, and voltage regulation. However, none of the energy storage technologies can satisfy the diverse and even multiple needs of power systems. Therefore, the hybrid energy storage system is a promising solution. 

This thesis discusses hybrid energy storage systems from two aspects to make better use of them in renewable power systems: capacity optimization and environmental implication. Firstly, capacity optimization is a significant concern for hybrid energy storage systems. To seek the optimal capacity of a hybrid energy storage system, this thesis explores the energy exchange between the individual energy storage devices within the system. It leads to oversized capacity and increased loss. Hence, an improved low-pass filter controller that contains the power direction control strategy and the state-of-charge control strategy is presented in this thesis. The improved controller effectively eliminates the unnecessary energy exchange to ensure the minimized capacity of the system and improves round-trip energy efficiency. In addition, an alternative controller with a variable time constant is presented to utilize the secondary energy storage device more properly in hybrid energy storage systems. Moreover, despite helping the integration of variable renewable energy, energy storage systems still have greenhouse gas emissions from cradle to grave. This thesis presents a consequential life cycle assessment approach and evaluates the life cycle greenhouse gas emissions from hybrid energy storage systems in renewable power systems. Different combinations are compared to seek the appropriate combination and forecast the potential of energy storage to achieve a 100% renewable power system with low emissions.

Abstract [sv]

Elproduktion bidrar med en stor del av utsläppen av växthusgaser som leder till klimatförändringar. För närvarande är kraftproduktionen i många delar av världen fortfarande starkt beroende av fossila bränslen. För att förhindra global uppvärmning är avsikten att kraftsektorn ska gå över från den nuvarande bränslemixen till förnybara energikällor. System för förnybar elproduktion, som är hållbara och miljövänliga, har potentialen att tillgodose vår elförbrukning. Vindkraft och solkraft ökade snabbt under det senaste decenniet, men under 2021 stod de ändå bara för cirka 10 % av den globala årliga elproduktionen. Det främsta hindret för vind- och solenergi är variabilitet, vilket innebär en allvarlig utmaning för konventionella kraftnät. På grund av bristen av energilagring behöver kraftnätet konstant hålla balansen mellan tillgången och efterfrågan på el.

Energilagring påverkar alla aspekter av kraftsystem, från produktion till förbrukning. Det ger stora fördelar för förnybara energikällor och kraftnät, såsom tidsförskjutning av energins nyttjande, förbättrad elkvalitet och spänningsreglering. Emellertid kan ingen av metoderna för energilagring tillfredsställa kraftsystemens mångsidiga och till och med mångfaldiga behov. Därför är hybridenergilagringssystemet en lovande lösning.

För att bättre kunna använda dem i förnybara kraftsystem diskuterar denna avhandling hybridenergilagringssystem från två aspekter: kapacitetsoptimering och miljökonsekvenser. Kapacitetsoptimering är ett stort problem för hybridenergilagringssystem och för att hitta den optimala kapaciteten undersöker denna avhandling energiutbytet mellan systemets individuella energilagringsenheterna. Detta energiutbyte leder till en överdimensionerad kapacitet och mera förluster. Därför presenteras i denna avhandling en förbättrad styrenhet, baserat på ett lågpassfilter, vars strategier styr effektflödena samt energinivåerna. Den förbättrade styrenheten eliminerar effektivt onödiga energiutbyten så att det säkerställs att systemets kapacitet minimeras samt att energieffektiviteten (tur och retur) förbättras. Dessutom presenteras en alternativ styrenhet med en variabel tidskonstant för att, i hybridenergilager, mer korrekt utnyttja den sekundära energilagringsenheten. Dessutom, trots att de bidrar till integreringen av varierande förnybar energi, är fortfarande energilagringssystem kopplade till utsläpp av växthusgaser under hela deras livscykel (från vaggan till graven). Denna avhandling presenterar en metod för livscykelanalys och utvärderar utsläppen av växthusgaser från hybridenergilagringssystem, under dess livscykel, i förnybara kraftsystem. Olika kombinationer jämförs för att hitta den mest lämpliga situationen och förutsäger potentialen för energilagring för att uppnå ett 100 % förnybart kraftsystem med låga utsläpp.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. , p. xv, 66
Series
TRITA-EECS-AVL ; 2022:75
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-321517ISBN: 978-91-8040-432-7 (print)OAI: oai:DiVA.org:kth-321517DiVA, id: diva2:1711450
Public defence
2022-12-14, Zoom: https://kth-se.zoom.us/j/61691420819, Kollegiesalen, Brinellvägen 8, Kungl Tekniska högskolan, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20221117

Available from: 2022-11-17 Created: 2022-11-17 Last updated: 2022-12-05Bibliographically approved
List of papers
1. A Study of the Energy Exchange within a Hybrid Energy Storage System and a Comparison of the Capacities, Lifetimes, and Costs of Different Systems
Open this publication in new window or tab >>A Study of the Energy Exchange within a Hybrid Energy Storage System and a Comparison of the Capacities, Lifetimes, and Costs of Different Systems
2021 (English)In: Energies, E-ISSN 1996-1073, Vol. 14, no 21, p. 7045-7045Article in journal (Refereed) Published
Abstract [en]

By combining the advantages of different energy storage technologies, the hybrid energy storage system (HESS) can satisfy the multiple requirements of prosumer systems. However, the required capacity of the HESS is larger than that of the single-battery energy storage system (ESS). This paper investigates the energy exchange within the HESS caused by the phase shift of the low-pass filter controller and its relevant impact on the HESS. The results show that unnecessary energy exchange results in an oversized capacity and increased energy loss. In addition, the increase in the time constant of the low-pass filter controller leads to a larger phase shift, further contributing to the increases in the total capacity and energy loss. Furthermore, this paper compares the single-battery ESS, the battery-supercapacitor HESS, and the battery-flywheel HESS implemented in a household-prosumer system along with a renewable energy source (RES). The comparison of the ESS combinations demonstrates the differences between their power flows, the required capacities of their individual energy storage devices (ESDs), their energy losses, their battery lifetimes, and their project costs. The results indicate that techno-economic analysis should be performed carefully to select the appropriate ESS solution for specific household-prosumer systems.

Place, publisher, year, edition, pages
MDPI AG, 2021
Keywords
battery, energy exchange, household-prosumer system, hybrid energy storage system (HESS), oversized capacity, phase shift, supercapacitor (SC)
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-304370 (URN)10.3390/en14217045 (DOI)000719005200001 ()2-s2.0-85118395968 (Scopus ID)
Note

QC 20211117

Available from: 2021-11-02 Created: 2021-11-02 Last updated: 2023-08-28Bibliographically approved
2. Study of the oversized capacity and the increased energy loss of hybrid energy storage systems and design of an improved controller based on the low-pass filter
Open this publication in new window or tab >>Study of the oversized capacity and the increased energy loss of hybrid energy storage systems and design of an improved controller based on the low-pass filter
2022 (English)In: Journal of Energy Storage, ISSN 2352-152X, E-ISSN 2352-1538, Vol. 50, p. 104241-104241, article id 104241Article in journal (Refereed) Published
Abstract [en]

A hybrid energy storage system (HESS) consisting of batteries and supercapacitors (SCs) is an effective approach to stability problems brought by renewable energy sources (RESs) in microgrids. This paper investigates the energy exchange between the two energy storage devices (ESDs) caused by the low-pass filter (LPF), which leads to the oversized capacity of HESSs. In addition, the energy exchange between the ESDs leads to more energy loss of HESSs. Based on the analysis of the power flows, this paper proposes an improved controller based on the LPF controller. A power direction control strategy eliminates the non-beneficial power flow to reduce the capacity of HESSs and improve the round-trip energy efficiency. In addition, a SOC control strategy regime balances the desired state of charge (SOC) of the ESDs instead of depending on the LPF. In this paper, the case study shows that the improved LPF controller reduces the capacity of the HESS to the minimized capacity and improves the round-trip energy efficiency. Furthermore, it has no adverse effect on battery aging and achieves the battery lifetime extension with a smaller capacity. A scaled-down HESS experimental setup validates the effectiveness of the improved LPF controller and the simulation results. Finally, the proposed improved controller is compared with various existing controllers to verify the performance.

Place, publisher, year, edition, pages
Elsevier BV, 2022
Keywords
Battery, Hybrid energy storage system (HESS), Low-pass filter, Oversized capacity, Round-trip energy efficiency, Supercapacitor (SC)
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-309343 (URN)10.1016/j.est.2022.104241 (DOI)000781385400002 ()2-s2.0-85125280962 (Scopus ID)
Funder
Swedish Research Council
Note

QC 20220502

Available from: 2022-02-28 Created: 2022-02-28 Last updated: 2023-08-28Bibliographically approved
3. Greenhouse Gas Emissions from Hybrid Energy Storage Systems in Future 100% Renewable Power Systems: A Swedish Case Based on Consequential Life Cycle Assessment
Open this publication in new window or tab >>Greenhouse Gas Emissions from Hybrid Energy Storage Systems in Future 100% Renewable Power Systems: A Swedish Case Based on Consequential Life Cycle Assessment
(English)Manuscript (preprint) (Other academic)
Abstract [en]

To promote the development of renewables, this article evaluates the life cycle greenhouse gas (GHG) emissions from hybrid energy storage systems (HESSs) in 100% renewable power systems. The consequential life cycle assessment (CLCA) approach is applied to evaluate and forecast the environmental implications of HESSs. Based on the power system of Sweden, different HESS combinations, which include energy storage (ES) technologies: pumped hydro ES, hydrogen ES, lithium-ion (Li-ion) batteries, lead-acid (PbA) batteries, vanadium redox (VR) batteries, supercapacitors (SCs), and flywheels, are discussed. The results show that for Sweden and similar large-scale utility applications, the cradle-to-gate GHG emissions from the HESS contribute to a major share of the life cycle GHG emissions due to the under-utilization of the cycle life. Among the HESSs compared in this study, the Pumped hydro+Li-ion+Flywheel combination exhibits the least life cycle GHG emissions. Moreover, the phasing out of nuclear power brings a severe challenge to the carbon reduction target. However, the introduced HESS manages to reduce GHG emissions from a 100% renewable power system.

Keywords
Consequential life cycle assessment, greenhouse gas emissions, hybrid energy storage system, renewable power system.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-321479 (URN)
Note

QC 20221117

Available from: 2022-11-16 Created: 2022-11-16 Last updated: 2022-11-22Bibliographically approved
4. Analysis of two hybrid energy storage systems in an off-grid photovoltaic microgrid: A case study
Open this publication in new window or tab >>Analysis of two hybrid energy storage systems in an off-grid photovoltaic microgrid: A case study
2020 (English)In: Proceedings IEEE PES Innovative Smart Grid Technologies Conference Europe, Institute of Electrical and Electronics Engineers (IEEE) , 2020, p. 554-558Conference paper, Published paper (Refereed)
Abstract [en]

In recent years, driven by global environmental issues, a growing number of renewable energy sources (RESs) have been developed. Microgrids have been confirmed as an important part in the increasing penetrations of renewable energy and the shift from a centralized paradigm to decentralized electricity production. The energy storage system (ESS) is a critical component that affects the development of microgrids. Combining advantages from different energy storage technologies, a hybrid energy storage system (HESS) can satisfy multiple requirements in microgrids. This paper compares the single battery system with the battery-supercapacitor (SC) HESS and the battery-flywheel HESS in an isolated photovoltaic (PV) power microgrid. Results show that both the SC and the flywheel distinctly reduce the battery charging and discharging powers and the required capacity of the battery. Therefore, the stresses and the needed size of the battery are reduced and the battery lifetime is extended.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2020
Keywords
Battery, Flywheel, Hybrid energy storage system (HESS), Photovoltaic (PV) power, Supercapacitor (SC), Electric energy storage, Electric power transmission networks, Flywheels, Microgrids, Photovoltaic cells, Renewable energy resources, Smart power grids, Wheels, Battery charging and discharging, Decentralized electricity productions, Energy storage systems, Energy storage technologies, Environmental issues, Hybrid energy storage systems, Hybrid energy storage systems (HESS), Renewable energy source, Secondary batteries
National Category
Energy Systems Energy Engineering Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-291565 (URN)10.1109/ISGT-Europe47291.2020.9248913 (DOI)000758439100108 ()2-s2.0-85097337479 (Scopus ID)
Conference
IEEE PES Innovative Smart Grid Technologies Europe, ISGT Europe 2020, Delft, The Netherlands, October 26-28, 2020
Note

Part of proceedings ISBN 978-1-7281-7100-5

QC 20220927

Available from: 2021-03-25 Created: 2021-03-25 Last updated: 2023-02-06Bibliographically approved
5. Power Distribution Strategy Based on Low-PassFilter Controller with a Variable Time Constant in Hybrid Energy Storage Systems
Open this publication in new window or tab >>Power Distribution Strategy Based on Low-PassFilter Controller with a Variable Time Constant in Hybrid Energy Storage Systems
2021 (English)In: Power Distribution Strategy Based on Low-PassFilter Controller with a Variable Time Constant in Hybrid Energy Storage Systems, 2021Conference paper, Published paper (Refereed)
Abstract [en]

A critical issue in a hybrid energy storage system (HESS) is the control strategy, especially the power distribution between the individual energy storage devices. In this paper, the power distribution strategy based on the low-pass filter (LPF) controller with a variable time constant is introduced. The adjustable range of the variable time constant is determined by the spectrum analysis of the imbalanced power in a stand-alone household-prosumer system. In addition, the variation of the time constant is based on the feedback of the state of charge (SoC) of the supercapacitor (SC). The simulation results show that the power distribution strategy keeps the SoC of the SC in a moderate range and utilizes the SC more properly. A scaled-down experimental setup is built to verify the effectiveness of the power distribution strategy and the simulation results. Therefore, the proposed power distribution strategy ensures the effective operation of the HESS, avoids the unnecessary enlarging of the SC, and achieves cost reduction. 

National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-305969 (URN)
Conference
ISGT-Europe 2021 : IEEE PES Innovative Smart Grid Technologies Conference Europe, Espoo, Oct 26, 2021
Note

QC 20211216

Available from: 2021-12-10 Created: 2021-12-10 Last updated: 2022-11-17Bibliographically approved

Open Access in DiVA

Thesis(4888 kB)2089 downloads
File information
File name FULLTEXT04.pdfFile size 4888 kBChecksum SHA-512
0fe2ac4af069dfb8958b0163b0a070b21a45c6cedbf1c7b5a362be335cd4b481f682352b2ba176383fc052751f734058dab407c5757701fecd5fc8f4dd8f56c7
Type fulltextMimetype application/pdf

Authority records

Jiao, Yang

Search in DiVA

By author/editor
Jiao, Yang
By organisation
Electromagnetic Engineering
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 2121 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 838 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf