kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Water diffusion, drag and absorption in an anion-exchange membrane fuel cell
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0003-0897-7249
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry. Comsol AB.ORCID iD: 0000-0001-9627-1902
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0002-2268-5042
Show others and affiliations
(English)In: Article in journal (Other academic) Submitted
Abstract [en]

Water is a key factor in anion-exchange membrane fuel cells, since it is botha product, reactant, and humidifies the membrane and ionomer phase. Toenable anion-exchange membrane fuel cells, knowledge about the water trans-port properties is needed, so that operating conditions can be optimised toprevent cathode dry-out or anode flooding. In this work, the water trans-port across an AemionTM membrane is quantified for different applied waterpartial pressure differences and current densities, with the help of humiditysensors. Two membrane thicknesses, 25 and 50 μm, are studied, as well astwo gas diffusion layers of different hydrophobicity: Sigracet 25BC which hasbeen PTFE treated to make it more hydrophobic, and Freudenberg H23C2which has not been PTFE treated, and is hence more hydrophilic. The re-sults show that having a hydrophilic GDL on the cathode and a hydrophobicGDL on the anode gives both the highest electrochemical performance, andthe highest water transport, while a hydrophilic GDL on both sides give thelowest electrochemical performance and the lowest water transport. A wa-ter transport model considering absorption/desorption resistance, electroos-motic drag and diffusion was deployed. The best fit was obtained with adrag coefficient close to two and 30 % increased absorption/desorption ratefor a hydrophobic GDL compared to a hydrophilic one.

Keywords [en]
anion-exchange membrane water transport, water transport model, fuel cell, humidity sensor
National Category
Chemical Engineering
Research subject
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-321586OAI: oai:DiVA.org:kth-321586DiVA, id: diva2:1711709
Note

QC 20221129

Available from: 2022-11-17 Created: 2022-11-17 Last updated: 2022-11-29Bibliographically approved
In thesis
1. Limiting processes in anion-exchange membrane fuel cells
Open this publication in new window or tab >>Limiting processes in anion-exchange membrane fuel cells
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fuel cells allow for converting chemical energy stored in hydrogen into electrical energy, with only heat and water as by-products. In a sustainable energy society, hydrogen may play an important role due to its ability to act both as an energy carrier and as a valuable chemical in the process industry. The main remaining obstacles for widely available commercial fuel cells are durability and cost. One way to potentially decrease the cost is to change the fuel cell environment to an alternative chemistry by replacing the proton-exchange membrane (PEM) with an anion-exchange membrane (AEM). This thesis studies the anode reaction, the cathode reaction and water transport in an anion-exchange membrane fuel cell (AEMFC), to investigate where its performance limitations lies in the system. Electrochemical characterisation techniques together with physics-based modelling have been utilised.

The results from the study of the anode, shows that the hydrogen reaction proceeds through the Tafel-Volmer pathway, with the Tafel step starting to limit the reaction as the anode overpotential increases. Combining the anode model with a Butler-Volmer expression for the cathode reaction made it possible to model a H2:O2 fuel cell. Comparing the losses from the different processes in the fuel cell shows that the cathode is still the main contributor, but that the anode contribution cannot be neglected when predicting the fuel cell performance. Low ionic conductivity in the electrode was also identified as responsible for part of the overall resistances, leading to uneven current distribution in the catalyst layers and bad utilisation of the catalytic material.

Investigating the water transport properties of AEMs showed that not only electroosmotic drag and diffusion, but also an absorption/desorption step between gas phase and membrane phase, are necessary to get a model that can explain the experimental observations. The choice of gas diffusion layers (GDLs) used on the anode and cathode was found to be of similar importance on the water transport as doubling the membrane thickness, showing that not only the membrane is important for water transport. Under most realistic conditions, the risk of local dry-out in a cell was found to be low, as water readily diffuses from the high humidity side of the membrane to the low humidity side.

Abstract [sv]

Bränsleceller gör det möjligt att konvertera kemisk energi lagrad i vätgas till elektrisk energi, med endast värme och vatten som biprodukter. I ett hållbart energisamhälle kan vätgas spela en viktig roll tack vare sin förmåga att agera både som energibärare och som en värdefull kemikalie i industrin. De sista hindren innan bränsleceller kan bli brett tillgängliga kommersiellt är deras livslängd och kostnad. Ett sätt att minimera kostnaden är att byta till en annan bränslecellskemi, genom att ersätta det protonledande membranet med ett anjonledande membran. Denna avhandling syftar till att undersöka begränsningar i anjonledande membranbränsleceller som hämmar utvecklingen och kommersialiseringen av dessa bränsleceller. Fokus i deolika delstudierna har varit på anoden, katoden, och vattentransporten i det anjonledande membranet.

Resultaten från undersökning av vätgaselektroden visade att reaktionen följer en Tafel-Volmer mekanism, i vilken Tafelsteget börjar begränsa hastigheten när överpotentialen på anoden ökar. Genom att kombinera anodmodellen med ett Butler-Volmer-uttryck för katodreaktionen så var det möjligt att modellera en H2:O2 bränslecell. Från en jämförelse av förlusterna från de olika processerna i bränslecellen kan vi dra slutsatsen att katoden fortfarande dominerar, men att hänsyn också måste tas till anodförlusterna om bränslecellens prestanda ska förutsägas. Låg jonledningsförmåga i elektroderna identifierades också som orsak för en del av förlusterna, vilket leder till ojämn strömfördelning i katalysatorskikten och begränsad utnyttjandegrad av katalysatormaterialet.

Undersökningar av vattentransportegenskaperna av anjonledande membran visade att inte bara elektroosmotisk diffusionsmotstånd och diffusion, utan också ett absorption-desorptions-steg mellan gasfasen och membranfasen bör inkluderas för att få en rimlig modell av vattentransporten. Att välja en lämplig kombination med avseende på hydrofobicitet av gasdiffusionsskikt visade sig vara lika avgörande som att dubbla membrantjockleken, vilket visar att inte bara permeabiliteten i membranet spelar roll för vattentransporten. Under de flesta realistiska förhållandena är risken för lokal uttorkning av elektroderna liten, tack vare att vatten snabbt kan diffundera från sidan med hög fuktighet till sidan med låg fuktighet.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 60
Series
TRITA-CBH-FOU ; 2022:58
Keywords
anion-exchange membrane fuel cell, hydrogen oxidation reaction, oxygen reduction reaction, water transport, physics-based modelling
National Category
Chemical Engineering
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-321600 (URN)978-91-8040-417-4 (ISBN)
Public defence
2022-12-16, D2, Lindstedtsvägen 5, via Zoom: https://kth-se.zoom.us/meeting/register/u5UrcOmqrTMoH9IQlT682yjBTuzuwVUylXBJ, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, EM16–0060Swedish Foundation for Strategic Research, ARC19–0026Swedish Energy Agency, P41397-1StandUp
Note

QC 2022-11-21

Available from: 2022-11-21 Created: 2022-11-18 Last updated: 2022-11-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Grimler, HenrikNikolić, NikolaEkström, HenrikLagergren, CarinaLindström, RakelLindbergh, Göran

Search in DiVA

By author/editor
Grimler, HenrikNikolić, NikolaEkström, HenrikLagergren, CarinaLindström, RakelLindbergh, Göran
By organisation
Applied Electrochemistry
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 342 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf