kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Oxygen reduction reaction kinetics on a Pt thin layer electrode in AEMFC
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0002-3615-5608
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0003-0897-7249
Department of Physics, Chalmers University of Technology.ORCID iD: 0000-0002-3958-7334
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0002-0452-0703
Show others and affiliations
2022 (English)In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 435, p. 141376-141376, article id 141376Article in journal (Refereed) Published
Abstract [en]

The study of the catalytic activity in a fuel cell is challenging, as mass transport, gas crossover and the counterelectrode are generally interfering. In this study, a Pt electrode consisting of a thin film deposited on the gasdiffusion layer was employed to study the oxygen reduction reaction (ORR) in an operating Anion Exchange Membrane Fuel Cell (AEMFC). The 2D Pt electrode was assembled together with a conventional porous Pt/Ccounter electrode and an extra Pt/C layer and membrane to reduce the H2 crossover. Polarization curves atdifferent O2 partial pressures were recorded and the resulting reproducible ORR activities were normalized withrespect to the active surface area (ECSA), obtained by CO stripping. As expected, decreasing the O2 partialpressure results in a negative shift in open circuit voltage (OCV), cell voltage and maximum attainable currentdensity. For cell voltages above 0.8 V a fairly constant Tafel slope of 60 mV dec−1 was recorded but at lowervoltages the slope increases rapidly. The observed Tafel slope can be explained by a theoretical model with anassociative mechanism where charge- and proton-transfer steps are decoupled, and the proton transfer is the rate-determining step. A reaction order of 1 with respect to O2 was obtained at 0.65 V which corresponds well withthe mechanism suggested above. Based on the obtained catalyst activities, the electrode performance is com­parable to good porous electrodes found in the field. The methodology presented in this study is expected to beuseful in future kinetic studies of other catalysts for AEMFC.

Place, publisher, year, edition, pages
Elsevier BV , 2022. Vol. 435, p. 141376-141376, article id 141376
Keywords [en]
Anion exchange membrane fuel cells, Platinum thin film, Oxygen reduction reaction kinetics
National Category
Chemical Engineering
Research subject
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-321588DOI: 10.1016/j.electacta.2022.141376ISI: 000882391400001Scopus ID: 2-s2.0-85140308298OAI: oai:DiVA.org:kth-321588DiVA, id: diva2:1711734
Note

QC 20221129

Available from: 2022-11-18 Created: 2022-11-18 Last updated: 2024-11-06Bibliographically approved
In thesis
1. Limiting processes in anion-exchange membrane fuel cells
Open this publication in new window or tab >>Limiting processes in anion-exchange membrane fuel cells
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fuel cells allow for converting chemical energy stored in hydrogen into electrical energy, with only heat and water as by-products. In a sustainable energy society, hydrogen may play an important role due to its ability to act both as an energy carrier and as a valuable chemical in the process industry. The main remaining obstacles for widely available commercial fuel cells are durability and cost. One way to potentially decrease the cost is to change the fuel cell environment to an alternative chemistry by replacing the proton-exchange membrane (PEM) with an anion-exchange membrane (AEM). This thesis studies the anode reaction, the cathode reaction and water transport in an anion-exchange membrane fuel cell (AEMFC), to investigate where its performance limitations lies in the system. Electrochemical characterisation techniques together with physics-based modelling have been utilised.

The results from the study of the anode, shows that the hydrogen reaction proceeds through the Tafel-Volmer pathway, with the Tafel step starting to limit the reaction as the anode overpotential increases. Combining the anode model with a Butler-Volmer expression for the cathode reaction made it possible to model a H2:O2 fuel cell. Comparing the losses from the different processes in the fuel cell shows that the cathode is still the main contributor, but that the anode contribution cannot be neglected when predicting the fuel cell performance. Low ionic conductivity in the electrode was also identified as responsible for part of the overall resistances, leading to uneven current distribution in the catalyst layers and bad utilisation of the catalytic material.

Investigating the water transport properties of AEMs showed that not only electroosmotic drag and diffusion, but also an absorption/desorption step between gas phase and membrane phase, are necessary to get a model that can explain the experimental observations. The choice of gas diffusion layers (GDLs) used on the anode and cathode was found to be of similar importance on the water transport as doubling the membrane thickness, showing that not only the membrane is important for water transport. Under most realistic conditions, the risk of local dry-out in a cell was found to be low, as water readily diffuses from the high humidity side of the membrane to the low humidity side.

Abstract [sv]

Bränsleceller gör det möjligt att konvertera kemisk energi lagrad i vätgas till elektrisk energi, med endast värme och vatten som biprodukter. I ett hållbart energisamhälle kan vätgas spela en viktig roll tack vare sin förmåga att agera både som energibärare och som en värdefull kemikalie i industrin. De sista hindren innan bränsleceller kan bli brett tillgängliga kommersiellt är deras livslängd och kostnad. Ett sätt att minimera kostnaden är att byta till en annan bränslecellskemi, genom att ersätta det protonledande membranet med ett anjonledande membran. Denna avhandling syftar till att undersöka begränsningar i anjonledande membranbränsleceller som hämmar utvecklingen och kommersialiseringen av dessa bränsleceller. Fokus i deolika delstudierna har varit på anoden, katoden, och vattentransporten i det anjonledande membranet.

Resultaten från undersökning av vätgaselektroden visade att reaktionen följer en Tafel-Volmer mekanism, i vilken Tafelsteget börjar begränsa hastigheten när överpotentialen på anoden ökar. Genom att kombinera anodmodellen med ett Butler-Volmer-uttryck för katodreaktionen så var det möjligt att modellera en H2:O2 bränslecell. Från en jämförelse av förlusterna från de olika processerna i bränslecellen kan vi dra slutsatsen att katoden fortfarande dominerar, men att hänsyn också måste tas till anodförlusterna om bränslecellens prestanda ska förutsägas. Låg jonledningsförmåga i elektroderna identifierades också som orsak för en del av förlusterna, vilket leder till ojämn strömfördelning i katalysatorskikten och begränsad utnyttjandegrad av katalysatormaterialet.

Undersökningar av vattentransportegenskaperna av anjonledande membran visade att inte bara elektroosmotisk diffusionsmotstånd och diffusion, utan också ett absorption-desorptions-steg mellan gasfasen och membranfasen bör inkluderas för att få en rimlig modell av vattentransporten. Att välja en lämplig kombination med avseende på hydrofobicitet av gasdiffusionsskikt visade sig vara lika avgörande som att dubbla membrantjockleken, vilket visar att inte bara permeabiliteten i membranet spelar roll för vattentransporten. Under de flesta realistiska förhållandena är risken för lokal uttorkning av elektroderna liten, tack vare att vatten snabbt kan diffundera från sidan med hög fuktighet till sidan med låg fuktighet.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 60
Series
TRITA-CBH-FOU ; 2022:58
Keywords
anion-exchange membrane fuel cell, hydrogen oxidation reaction, oxygen reduction reaction, water transport, physics-based modelling
National Category
Chemical Engineering
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-321600 (URN)978-91-8040-417-4 (ISBN)
Public defence
2022-12-16, D2, Lindstedtsvägen 5, via Zoom: https://kth-se.zoom.us/meeting/register/u5UrcOmqrTMoH9IQlT682yjBTuzuwVUylXBJ, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, EM16–0060Swedish Foundation for Strategic Research, ARC19–0026Swedish Energy Agency, P41397-1StandUp
Note

QC 2022-11-21

Available from: 2022-11-21 Created: 2022-11-18 Last updated: 2022-11-21Bibliographically approved
2. Electrochemical evaluation of thin-layer catalysts in polymer electrolyte fuel cells
Open this publication in new window or tab >>Electrochemical evaluation of thin-layer catalysts in polymer electrolyte fuel cells
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fuel cells emerge as a zero-emission transport option by converting chemical energy into usable electricity, with heat and water as the only by-products. In the automotive sector, acidic proton exchange membrane fuel cells (PEMFCs) are the most viable option, but their high price is still limiting the possibility to be competitive with other techniques. The anion exchange membrane fuel cells (AEMFCs) in alkaline media allow the use of less expensive materials, but these materials are not enough developed and there is a lack of established measuring protocols and stable reference materials. By focusing on electrocatalysis, this thesis describes how different experimental approaches can be utilized to evaluate the kinetics of thin-layer catalysts in fuel cell conditions, mainly in alkaline media. 

By using a special membrane electrode assembly (double-MEA setup), the kinetics of oxygen reduction reaction (ORR) onto a platinum (Pt) layer in alkaline media was studied without interferences caused by mass transport and gas crossover. The ORR kinetics on a silver (Ag) layer was also evaluated and compared with Pt. In acidic media the ORR stability of a platinum yttrium (Pt3Y) layer was investigated via an accelerated stress test (AST). To test the fast kinetics of hydrogen oxidation (HOR) and hydrogen evolution (HER) onto a Pt layer without mass transport limitations, an alkaline hydrogen-cell was utilized. 

The results showed that the double-MEA setup is an ideal system for kinetics studies. On Pt, it restricted hydrogen crossover which resulted in reproducible specific ORR activities, comparable to those of good porous electrodes found in the field. Compared with Pt, Ag displayed a later onset potential for ORR due to a mixed potential caused by Ag oxidation. The Ag layer performed better than Pt below 0.5 V while at higher voltages its stability was compromised due to the formation of Ag-oxides. With respect to Pt3Y, after AST, the ORR activities decreased for all voltages, being very close to those for pure Pt before AST. The loss of ORR activity on Pt3Y was due to an increase in the thickness of the Pt overlayer which induced a relaxation of the Pt overlayer, decreasing the compressive strain effect. The HER activities on Pt in acidic PEM conditions were between two and three orders of magnitude higher than in alkaline AEM media. For HOR this difference was reduced to around one order of magnitude. By correlating the experimental results to different mechanisms, the HOR/HER kinetics on Pt in acidic media can be associated with the Tafel−Volmer mechanism, with the Volmer reaction as rate determining step. In the case of Pt in alkaline media, the HOR/HER kinetics can be related to the HeyrovskyVolmer mechanism, with Volmer reaction as the rate determining step.

Abstract [sv]

Bränsleceller utvecklas som ett bra alternativ för transporter utan utsläpp, genom att de omvandlar kemisk energi till användbar elektricitet, med värme och vatten som de enda biprodukterna. Inom bilindustrin är sura protonledande membranbränsleceller (PEMFCs) det mest lämpliga alternativet, men det höga priset begränsar möjligheterna att konkurrera med andra tekniker. Anjonledande membranbränsleceller (AEMFC) i alkalisk miljö tillåter användningen av billigare material, men dessa material är inte tillräckligt undersökta och etablerade mätmetoder och stabila referensmaterial saknas fortfarande.  Med fokus på elektrokatalys, så beskriver den här avhandlingen hur olika experimentella metoder kan användas för att utvärdera kinetiken i tunnskiktskatalysatorer i realistiska bränslecellsmiljöer, huvudsakligen alkaliska. 

Genom användning av en speciell cell med dubbla MEA (membrane electrode assembly) studerades kinetiken för syrgasoxidationsreaktionen (ORR) på ett tunt skikt av platina (Pt) i alkalisk miljö, utan störningar orsakade av materietransportbegränsningar och gas-crossover. ORR-kinetiken på ett skikt av silver (Ag) utvärderades också och jämfördes med Pt. Även den snabba kinetiken för väteoxidationsreaktionen (HOR) och vätgasutveckling (HER) studerades på en alkalisk tunnskiktskatalysator av Pt. I sur miljö utvärderades stabiliteten av ORR på ett skikt av platinayttrium (Pt3Y) genom ett accelererat stresstest. 

Resultaten visade att användningen av dubbla MEA är idealisk för att studera kinetik. På Pt begränsade det extra MEA:t vätgascrossover, vilket resulterade i reproducerbara specifika ORR-aktiviteter som är jämförbara med dem på bra porösa elektroder. Jämfört med Pt uppvisade Ag en senare startpotential för ORR på grund av en blandpotential orsakad av Ag-oxidation. Ag-skiktet presterade bättre än Pt under 0,5 V medan dess stabilitet vid högre spänningar påverkades av bildningen av Ag-oxider. När det gäller Pt3Y så minskade ORRaktiviteterna efter AST för alla spänningar och var då snarlika dem för ren Pt före AST. Minskningen av ORR-aktivitet för Pt3Y berodde på en ökning av tjockleken och en förändrad spänning i det översta skiktet av Pt. HERaktiviteterna på Pt i sura PEM-förhållanden var två till tre tiopotenser högre än i alkalisk AEM-miljö. För HOR reducerades skillnaden till cirka en tiopotens. Genom att jämföra resultaten med olika reaktionsmekanismer, så kan HOR/HER-kinetiken på Pt i sur miljö kopplas till Tafel-Volmer-mekanismen, med Volmer-reaktionen som det hastighetsbestämmande steget. I fallet med Pt i alkalisk miljö, kan HOR/HER-kinetiken kopplas till Heyrovksy-Volmermekanismen, också där med Volmer-steget som hastighetsbestämmande. 

Place, publisher, year, edition, pages
Sweden: KTH Royal Institute of Technology, 2024. p. 48
Series
TRITA-CBH-FOU ; 2024:49
Keywords
Anion exchange membrane fuel cells, thin-layer catalyst, oxygen reduction reaction, hydrogen oxidation reaction, hydrogen evolution reaction, Anjonledande membranbränslecell, tunnskiktskatalysator, syrgasreduktionsreaktion, vätgasoxidationsreaktion, vätgasutveckling
National Category
Chemical Engineering
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-355975 (URN)978-91-8106-098-0 (ISBN)
Public defence
2024-11-29, F3, Lindstedtsvägen 26, https://kth-se.zoom.us/webinar/register/WN_UwN3VxAFRruM-foeenvOtA, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20241107

Available from: 2024-11-07 Created: 2024-11-06 Last updated: 2024-11-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Marra, EvaGrimler, HenrikWreland Lindström, RakelLindbergh, GöranLagergren, Carina

Search in DiVA

By author/editor
Marra, EvaGrimler, HenrikMontserrat-Sisó, GerardWreland Lindström, RakelLindbergh, GöranLagergren, Carina
By organisation
Applied Electrochemistry
In the same journal
Electrochimica Acta
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 241 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf