kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
2D Simulations of Water Treatment with Upscaled Capacitive Deionization
KTH, School of Engineering Sciences (SCI), Applied Physics. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova. Functional Materials, KTH.ORCID iD: 0000-0003-3081-8527
KTH, School of Engineering Sciences (SCI), Applied Physics. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova. Functional Materials, KTH.ORCID iD: 0000-0002-0074-3504
2022 (English)In: Proceedings of the 10th International Workshop on Simulation for Energy, Sustainable Development & Environment (SESDE), 00419th International Multidisciplinary Modeling & Simulation Multiconference, Cal-Tek Srl , 2022Conference paper, Published paper (Refereed)
Abstract [en]

Clean water is a major global challenge. Meanwhile, capacitive deionization (CDI) is an emerging desalination technology that could help produce and reuse water. As the technology develops, the modeling of upscaled systems is becoming increasingly relevant. However, the inherent complexities in the CDI process have historically made such simulations unfeasible. In this work, we leverage the newly published electrolytic-capacitor (ECL) model to efficiently simulate parallel/serial flow modes in CDI stacks. The simulations are based on finite-element methods (FEM) that couple differential equations for describing local charging and ionic transport inside the device. The results show that both parallel and serial connections scale incredibly well with the system size. Still, parallel connections have the advantage of requiring lower pumping energy. Overall, we find that the relationship between adsorption capacity, flowrate, and compartment size is a good indicator of performance. In conclusion, the ELC model is promising for simulating upscaled CDI.

Place, publisher, year, edition, pages
Cal-Tek Srl , 2022.
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-321702DOI: 10.46354/i3m.2022.sesde.004Scopus ID: 2-s2.0-85141477460OAI: oai:DiVA.org:kth-321702DiVA, id: diva2:1712368
Conference
10th International Workshop on Simulation for Energy, Sustainable Development & Environment, SESDE Rome Italy, 19-21 september, 2022
Funder
Swedish Research Council, 2018-05387
Note

QC 20221125

Part of proceedings ISBN 9788885741829

Available from: 2022-11-21 Created: 2022-11-21 Last updated: 2023-06-08Bibliographically approved
In thesis
1. At the Mountains of Modeling: Multiscale Simulations of Desalination by Capacitive Deionization
Open this publication in new window or tab >>At the Mountains of Modeling: Multiscale Simulations of Desalination by Capacitive Deionization
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

More than 2 billion people are living in water-scarce areas. Meanwhile, there are enormous amounts of water in the salty oceans. Capacitive deionization (CDI) rises to the challenge with electrochemical cells for desalinating the water. As the CDI field expands, modeling becomes an increasingly important part of the development landscape. Multiscale modeling could bring innovations from the material scale to pilot plants. 

The multiscale work in this thesis has been like climbing a mountain. At the start, we investigate the macroscopic device level. One milestone is the electrolytic-capacitor (ELC) model, which can simulate CDI process dynamics. Whereas previous 2D models were unsteady for a single CDIcell, the ELC model could accurately simulate stacks of over 100 cells at a fraction of the time. It also enables simulations of complex upscaled geometries, such as bipolar electrode stacks, ohmic charging, and asymmetric devices. Going up the mountain, the mesoscopic level reveals the local mechanisms behind the macroscopic behavior. One important stepping stone is the dynamic Langmuir (DL) model, which reveals how isotherm-based modeling can crease stable and tractable simulations. Also, developments in isotherm, double-layer, and circuit modeling make it possible to choose what model structures to lean on depending on the conditions. Near the top of the mountain, the microscopic level shows the fundamental atomic mechanisms behind the mesoscopic material properties. These investigations reveal a ladder mechanism of ion transport in crystals of Prussian blue analogs (PBA), meaning the cations climb frames formed by negative groups in the crystal structure.

In the end, we plant a flag by combining the developments from the journey into a complete multiscale model. That model demonstrated that we could predict CDI charging trends from the atomic structure of PBA electrodes. Having the full multiscale model also made it possible to backtrack and determine atomic-level mechanisms by comparing the output of different mechanism cases with macroscopic experiment data. The multiscale mountain is massive and has big potential. A dream is that future research will expand these concepts, in CDI and beyond.

Abstract [sv]

Över 2 miljarder människor lever i dag i områden med vattenbrist, samtidigt som det finns enorma mängder saltvatten i haven. Kapacitiv avjonisering (CDI) kan hantera detta genom avsaltning av vatten med hjälp av elektrokemiska celler. När CDI-fältet expanderar blir också modellering allt viktigare. Speciellt med multiskalemodellering finns möjligheten att driva innovationer från material till pilotanläggningar. 

Vårt jobb har varit som att klättra upp för ett berg. I den inledande delen undersökte vi den makroskopiska nivån, som handlar om hur avsaltningsenheterna fungerar. Ett viktigt steg för att simulera dynamiken i processen har varit utvecklingen av ELC modellen. Till skillnad från tidigare modeller som kunde vara instabila för en enda avsaltningscell så kunde ELC-modellen hantera travar med över 100 celler. Det gör det möjligt att simulera komplexa uppskalade strukturer, såsom bipolära elektroder, ohmsk laddning, och asymmetrisk design. Vidare upp i berget finns mesoskalan. Den visar på de lokala mekanismerna bakom det makroskopiska beteendet. En viktig del har varit den dynamiska Langmuir-modellen (DL), som har visat hur isotermbaserad modellering kan ge stabila och smidiga simuleringar. Utvecklingen i isoterm-, dubbellager-, och kretsmodeller gör det även möjligt att välja lämpliga metoder att stödja sig mot beroende på situation. Nära toppen av berget finns mikroskalan, som handlar om det atomära beteendet som bestämmer de mesoskopiska egenskaperna. Här har vi upptäckt en stegmekanism för jontransport i kristaller av berlinerblått. Detta innebär att katjoner klättar längs ramar som utgörs av negativa grupper i kristallstrukturen.

Slutligen hissar vi flaggan genom att kombinera resultaten från alla nivåer. Multiskalemodellen visar att vi kan förutsäga laddningstrender i CDI baserat på atomstrukturen i elektroden. Multiskalemodellen gjorde det också möjligt att gå baklänges och att identifiera mekanismer på mikroskala genom att beräkna den makroskopiska effekten av olika fall och jämföra med experimentella data. Multiskaleberget är massivt och har stor potential. En dröm är att framtida forskning ska utöka koncepten från den här avhandlingen, i CDI och vidare.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. xvii + 203
Series
TRITA-SCI-FOU ; 2022:57
Keywords
Capacitive Deionization, Desalination, Modeling, Multiscale, Simulation, Avsaltning, Kapacitiv Avjonisering, Modellering, Multiskala, Simulering
National Category
Physical Chemistry
Research subject
Physics, Material and Nano Physics; Physics
Identifiers
urn:nbn:se:kth:diva-321885 (URN)978-91-8040-409-9 (ISBN)
Public defence
2022-12-16, https://kth-se.zoom.us/j/8537018117, FB53 AlbaNova, Roslagstullsbacken 22, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
J. Gust. Richert stiftelse, 2020-00584Swedish Research Council, 2018-05387
Note

QC 221125

Available from: 2022-11-25 Created: 2022-11-25 Last updated: 2022-12-08Bibliographically approved

Open Access in DiVA

fulltext(333 kB)209 downloads
File information
File name FULLTEXT01.pdfFile size 333 kBChecksum SHA-512
3c71fd39f11c8015b15ceb4c1e877cc1d4823fa87adfe6c5488a25e7a020c46d00544f5a6e6f2eb2164871cdc92697d68d420341d163c9c0942b5dbc2be7a3d3
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Nordstrand, JohanDutta, Joydeep

Search in DiVA

By author/editor
Nordstrand, JohanDutta, Joydeep
By organisation
Applied PhysicsAlbanova VinnExcellence Center for Protein Technology, ProNova
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 209 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 172 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf