kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spatial transcriptome and epigenome analysis with focus on prostate cancer
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab. (Spatial Research - Lundeberg lab)ORCID iD: 0000-0003-2627-2437
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Each cancer is unique, and therefore the use of general treatments are often suboptimal. If we can understand the mechanisms of cancer development, we might be able to develop effective treatments tailored to each patient. Our bodies are complex three-dimensional structures and how things are organized correlate with proper functioning. Technologies for biological research have escalated enormously in the last years. Going from bulk analysis of tissues to the advent of single cell sequencing and spatially resolved transcriptomics has initiated a new era in biological research. The technology Spatial Transcriptomics (ST) combines histology with next-generation sequencing, making it possible to map which genes that are active at thousands of sub-areas in a tissue section. 

In Paper I, ST was combined with an in-house developed artificial intelligence method to explore the landscape of prostate cancer tissue. We identified a gene expression-based tumor signature in healthy tissue areas not possible to recognize through visual assessment, indicating that the genotype changes before phenotype. A gradient of the tumor microenvironment was also identified. In Paper II, prostate cancer tissue from three patients were investigated before and after androgen deprivation therapy using ST. All patients treated with this therapy long enough will reach a clinically defined stage called castration-resistant prostate cancer. We could see that only a set of cancer cells across the tissue responded to the treatment, which allowed comparison of gene expression program in responding versus non-responding cells. By understanding the underlying mechanisms to resistance, it might be possible to target these cells and decrease relapse risk. In Paper III, we inferred copy number variation from ST data allowing for the generation of genome integrity maps in cancerous tissue of prostate, breast, brain, and skin, and in a lymph node. This allowed us to identify tumor clones not recognizable histologically, indicating how genomic instability can be initiated and spread before visible for the naked eye. In Paper IV, we developed a method for spatial ATAC-seq by fusing the ST-technology with ATAC-seq, enabling the analyses of accessible chromatin while preserving histological information. The Visium platform by 10x Genomics was used and we demonstrate a similar capture efficiency to single-cell ATACseq.

Abstract [sv]

Varje cancer är unik, vilket medför att generella behandlingar ofta är suboptimala. Om vi kan förstå mekanismerna bakom cancerutveckling kan vi öka chansen att utveckla effektiva behandlingar anpassade till varje patient. Våra kroppar är tredimensionella strukturer och hur saker är organiserade inom oss korrelerar med funktion. Teknologier för biologisk forskning har eskalerat enormt de senaste åren. Att gå från bulkanalys av vävnader till begynnelsen a vsingle-cell-sekvensering och spatialt upplöst transkriptomik har initierat en ny era inom biologisk forskning. Teknologin Spatial Transkriptomics (ST) kombinerar histologi med next-generation sequencing, vilket möjliggör att kartlägga vilka gener som är aktiva på tusentals subdelar av ett vävnadssnitt.

I Artikel I kombinerades ST med en in-house-utvecklad artificiell intelligens metod för att kunna utforska landskapet av prostatacancervävnad. Vi identifierade genuttrycksbaserade tumörsignaturer inom ett område som via visuell inspektion ej var tumör, vilket indikerar att genotypen ändras innan fenotypen. En gradient av tumörmikroomgivningen identifierades också. I Artikel II undersöktes prostatacancervävnad från tre patienter före och efter androgendeprivationsterapi med ST. Alla patienter behandlade med denna terapi under tillräckligt lång tid kommer nå en kliniskt definierad nivå som kallas kastreringsresistent prostatacancer. Vi kunde se att endast vissa cancerceller i vävnaden svarade på behandling, vilket möjliggjorde jämförelse av genuttrycksprogram mellan svarande och ickesvarande celler. Genom att förstå de underliggande resistensmekanismerna kan det bli möjligt att målsöka dessa celler och minska risken för återfall. I Artikel III, så drog vi slutsatser gällande copy number variation utifrån ST-datan, vilket möjliggjorde en kartläggning av genomintegritet i cancervävnad av prostata, bröst, hjärna, och hud, samt i en lymfnod. Detta medförde att vi kunde identifiera tumörkloner som inte kunde identifieras histologiskt, och indikerar att genom instabilitet kan initieras och spridas innan synligt för det nakna ögat. I Artikel IV utvecklade vi en metod för spatial ATAC-sekvensering genom att kombinera ST-teknologin med ATAC-sekvensering, vilket möjliggör analys av tillgängligt kromatin medan histologisk information bevaras. För detta användes Visium-plattformen av 10x Genomics och vi uppvisar ett liknande antal uppfångade molekyler som vid single-cell ATAC-sekvensering. 

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2022. , p. 49
Series
TRITA-CBH-FOU ; 2022:63
Keywords [en]
Spatial, Spatial Transcriptomics, Spatial ATAC, epigenomics
National Category
Medical Biotechnology
Research subject
Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-321711ISBN: 978-91-8040-428-0 (electronic)OAI: oai:DiVA.org:kth-321711DiVA, id: diva2:1712392
Public defence
2022-12-16, Ragnar Granit, Biomedicum, Karolinska Institutet, Solnavägen 9, Solna, via Zoom: https://kth-se.zoom.us/meeting/register/u50uc-irrTMjEt0JP0nvbsYtmMp3Z70yBUxn, Stockholm, 13:00 (Swedish)
Opponent
Supervisors
Note

QC 2022-11-28

Available from: 2022-11-28 Created: 2022-11-21 Last updated: 2022-12-08Bibliographically approved
List of papers
1. Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity
Open this publication in new window or tab >>Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity
Show others...
2018 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 9, no 1, article id 2419Article in journal (Refereed) Published
Abstract [en]

Intra-tumor heterogeneity is one of the biggest challenges in cancer treatment today. Here we investigate tissue-wide gene expression heterogeneity throughout a multifocal prostate cancer using the spatial transcriptomics (ST) technology. Utilizing a novel approach for deconvolution, we analyze the transcriptomes of nearly 6750 tissue regions and extract distinct expression profiles for the different tissue components, such as stroma, normal and PIN glands, immune cells and cancer. We distinguish healthy and diseased areas and thereby provide insight into gene expression changes during the progression of prostate cancer. Compared to pathologist annotations, we delineate the extent of cancer foci more accurately, interestingly without link to histological changes. We identify gene expression gradients in stroma adjacent to tumor regions that allow for re-stratification of the tumor micro- environment. The establishment of these profiles is the first step towards an unbiased view of prostate cancer and can serve as a dictionary for future studies.

Place, publisher, year, edition, pages
Nature Publishing Group, 2018
National Category
Clinical Medicine
Identifiers
urn:nbn:se:kth:diva-273011 (URN)10.1038/s41467-018-04724-5 (DOI)000435650800010 ()29925878 (PubMedID)2-s2.0-85048864922 (Scopus ID)
Note

QC 20200624

Available from: 2020-05-05 Created: 2020-05-05 Last updated: 2024-03-15Bibliographically approved
2. Spatio-temporal analysis of prostate tumors in situ suggests pre-existence of treatment-resistant clones
Open this publication in new window or tab >>Spatio-temporal analysis of prostate tumors in situ suggests pre-existence of treatment-resistant clones
Show others...
2022 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 13, no 1, article id 5475Article in journal (Refereed) Published
Abstract [en]

The molecular mechanisms underlying lethal castration-resistant prostate cancer remain poorly understood, with intratumoral heterogeneity a likely contributing factor. To examine the temporal aspects of resistance, we analyze tumor heterogeneity in needle biopsies collected before and after treatment with androgen deprivation therapy. By doing so, we are able to couple clinical responsiveness and morphological information such as Gleason score to transcriptome-wide data. Our data-driven analysis of transcriptomes identifies several distinct intratumoral cell populations, characterized by their unique gene expression profiles. Certain cell populations present before treatment exhibit gene expression profiles that match those of resistant tumor cell clusters, present after treatment. We confirm that these clusters are resistant by the localization of active androgen receptors to the nuclei in cancer cells post-treatment. Our data also demonstrates that most stromal cells adjacent to resistant clusters do not express the androgen receptor, and we identify differentially expressed genes for these cells. Altogether, this study shows the potential to increase the power in predicting resistant tumors. Spatial heterogeneity in prostate cancer can contribute to its resistance to androgen deprivation therapy (ADT). Here, the authors analyse prostate cancer samples before and after ADT using Spatial Transcriptomics, and find heterogeneous pre-treatment tumour cell populations and stromal cells that are associated with resistance.

Place, publisher, year, edition, pages
Springer Nature, 2022
National Category
Medical Genetics and Genomics Cancer and Oncology Pediatrics
Identifiers
urn:nbn:se:kth:diva-319836 (URN)10.1038/s41467-022-33069-3 (DOI)000854873600016 ()36115838 (PubMedID)2-s2.0-85138146373 (Scopus ID)
Note

QC 20221012

Available from: 2022-10-12 Created: 2022-10-12 Last updated: 2025-02-10Bibliographically approved
3. Spatially resolved clonal copy number alterations in benign and malignant tissue
Open this publication in new window or tab >>Spatially resolved clonal copy number alterations in benign and malignant tissue
Show others...
2022 (English)In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 608, no 7922, p. 360-+Article in journal (Refereed) Published
Abstract [en]

Defining the transition from benign to malignant tissue is fundamental to improving early diagnosis of cancer(1). Here we use a systematic approach to study spatial genome integrity in situ and describe previously unidentified clonal relationships. We used spatially resolved transcriptomics(2) to infer spatial copy number variations in >120,000 regions across multiple organs, in benign and malignant tissues. We demonstrate that genome-wide copy number variation reveals distinct clonal patterns within tumours and in nearby benign tissue using an organ-wide approach focused on the prostate. Our results suggest a model for how genomic instability arises in histologically benign tissue that may represent early events in cancer evolution. We highlight the power of capturing the molecular and spatial continuums in a tissue context and challenge the rationale for treatment paradigms, including focal therapy.

Place, publisher, year, edition, pages
Springer Nature, 2022
National Category
Genetics and Genomics Business Administration Cancer and Oncology
Identifiers
urn:nbn:se:kth:diva-319852 (URN)10.1038/s41586-022-05023-2 (DOI)000838658900025 ()35948708 (PubMedID)2-s2.0-85135833407 (Scopus ID)
Note

QC 20221010

Available from: 2022-10-10 Created: 2022-10-10 Last updated: 2025-02-01Bibliographically approved
4. Solid-phase capture and profiling of open chromatin by spatial ATAC
Open this publication in new window or tab >>Solid-phase capture and profiling of open chromatin by spatial ATAC
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Current methods for epigenomic profiling are limited in the ability to obtain genome wide

information with spatial resolution. Here we introduce spatial ATAC, a method that integrates

transposase-accessible chromatin profiling in tissue sections with barcoded solid-phase capture

to perform spatially resolved epigenomics. We show that spatial ATAC enables the discovery

of the regulatory programs underlying spatial gene expression during mouse organogenesis,

lineage differentiation and in human pathology.

Keywords
spatial, ATAC-seq, epigenomics
National Category
Medical and Health Sciences Medical Biotechnology
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-321705 (URN)
Note

QC 20221129

Available from: 2022-11-21 Created: 2022-11-21 Last updated: 2022-11-29Bibliographically approved

Open Access in DiVA

fulltext(5554 kB)612 downloads
File information
File name FULLTEXT01.pdfFile size 5554 kBChecksum SHA-512
b612efcac6e9ece9f736ffb16ba032c1ff1921f119700a058f286814345d43302e362da47c7590ad90a133474021a6ed82fbd48866d194807c9f4854fd053c35
Type fulltextMimetype application/pdf

Authority records

Marklund, Maja

Search in DiVA

By author/editor
Marklund, Maja
By organisation
Gene TechnologyScience for Life Laboratory, SciLifeLab
Medical Biotechnology

Search outside of DiVA

GoogleGoogle Scholar
Total: 612 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 861 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf