kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Scenario Generation For Vehicles Using Deep Learning
KTH, School of Electrical Engineering and Computer Science (EECS).
2022 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Scenariogenerering för fordon som använder Deep Learning (Swedish)
Abstract [en]

In autonomous driving, scenario generation can play a critical role when it comes to the verification of the autonomous driving software. Since uncertainty is a major component in driving, there cannot be just one right answer to a prediction for the trajectory or the behaviour, and it becomes important to account for and model that uncertainty. Several approaches have been tried for generating the future scenarios for a vehicle and one such pioneering work set out to model the behaviour of the vehicles probabilistically while tackling the challenges of representation, flexibility, and transferability within one system. The proposed system is called the Semantic Graph Network (SGN) which utilizes feedforward neural networks, Gated Recurrent Units (GRU), and a generative model called the Mixed Density Network to serve its purpose.

This thesis project set out in the direction of the implementation of this research work in the context of highway merger scenario and consists of three parts. The first part involves basic data analysis for the employed dataset, whereas the second part involves a model that implements certain parts of the SGN including a variation of the context encoding and the Mixture Density Network. The third and the final part is an attempt to recreate the SGN itself. While the first and the second parts were implemented successfully, for the third part, only certain objectives could be achieved.

Abstract [sv]

Vid autonom körning kan scenariegenerering spela en avgörande roll när det gäller verifieringen av programvaran för autonom körning. Eftersom osäkerhet är en viktig komponent i körning kan det inte bara finnas ett rätt svar på en förutsägelse av banan eller beteendet, och det blir viktigt att redogöra för och modellera den osäkerheten. Flera tillvägagångssätt har prövats för att generera framtidsscenarierna för ett fordon och ett sådant banbrytande arbete gick ut på att modellera fordonens beteende sannolikt samtidigt som utmaningarna med representation, flexibilitet och överförbarhet inom ett system hanteras. Det föreslagna systemet kallas Semantic Graph Network (SGN) som använder neurala nätverk, Gated Recurrent Units (GRU) och en generativ modell som kallas Mixed Density Network för att tjäna sitt syfte.

Detta examensarbete riktar sig mot genomförandet av detta forskningsarbete i samband med motorvägssammanslagningsscenariot och består av tre delar. Den första delen involverar grundläggande dataanalys för den använda datamängden, medan den andra delen involverar en modell som implementerar vissa delar av SGN inklusive en variation av kontextkodningen och Mixture Density Network. Den tredje och sista delen är ett försök att återskapa själva SGN. Även om den första och den andra delen genomfördes framgångsrikt, kunde endast vissa mål uppnås för den tredje delen.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology , 2022. , p. 69
Series
TRITA-EECS-EX ; 2022:753
Keywords [en]
Scenario generation, Mixture Density Network, Gaussian Mixture Model, Autonomous driving, Semantic Graph Network
Keywords [sv]
Scenariogenerering, Mixture Density Network, Gaussian Mixture Model, Autonom körning, Semantic Graph Network
National Category
Computer Sciences Computer Engineering Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-321748OAI: oai:DiVA.org:kth-321748DiVA, id: diva2:1712821
External cooperation
Zenseact AB
Presentation
2022-10-03, via Zoom https://kth-se.zoom.us/j/9436681205, Stockholm, Stockholm, 13:00 (English)
Supervisors
Examiners
Available from: 2023-01-21 Created: 2022-11-22 Last updated: 2025-01-17Bibliographically approved

Open Access in DiVA

fulltext(4261 kB)205 downloads
File information
File name FULLTEXT01.pdfFile size 4261 kBChecksum SHA-512
b5c6797acfe5e88327114fe3fa031f4bacc527f612eae75a17eace90b5aca6d065720745c9b1bb22deb8ba75630584c1f321734a689c15e87346aa03652893ac
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer SciencesComputer EngineeringComputer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 205 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 316 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf