kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Temperature predictions using a digital twin and machine learning: Digital Twin model of an electric boat’s cooling system that provides artificial data for training of a machine learning model
KTH, School of Electrical Engineering and Computer Science (EECS).
2022 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Temperaturförutsägelser med hjälp av en digital tvilling och maskininlärning : Digital tvillingmodell av en elektrisk båts kylsystem som ger artificiell data för träning av en maskininlärningsmodell (Swedish)
Abstract [en]

The transportation industry stands for a big chunk of the worlds total carbon emissions. To counter this problem electric vehicles are seen as a good solution. However, these vehicles come at a greater cost and do not offer the same range as their less environmentally friendly counterpart. To lessen costs and development time when optimizing electric vehicles, simulations of the vehicles functionality can be utilized. One way of getting such simulations is to design a digital twin of the physical system. A digital twin is able to mimic the functionality of the physical system and can therefore offer well based indications of how a change in design will change the performance in reality.

In this thesis a digital twin of the cooling system of an electric boat is designed with realistic results. Cooling systems in the scope of electric vehicles are of grave importance since the electric driveline becomes hot during use which can hinder performance of the vehicle. This is especially true for the high voltage batteries that tend to have quite a narrow range of temperatures within which performance is optimal.

This thesis handles an attempt at optimizing the cooling system, replicated by the digital twin, by the use of a temperature predictive model. Three different machine learning models were tested and the resulting best model achieved a mean absolute error of 2.4 and a mean average percentage error of 5.7. However, the model was unable to foresee sudden temperature spikes and drops. A possible fix, that could not be tested in this thesis, would be to implement further input data such as driver profiles and/or GPS data with speed limits.

Abstract [sv]

Transportindustrin står för en stor del av världens totala koldioxidutsläpp. För att motverka detta problem ses elfordon som en bra lösning. Dessa fordon kommer dock till en högre kostnad och erbjuder inte samma räckvidd som deras mindre miljövänliga motpart. För att minska kostnader och utvecklingstid vid optimering av elfordon kan simuleringar av fordonens funktionalitet användas. Ett sätt att få sådana simuleringar är att designa en digital tvilling av det fysiska systemet. En digital tvilling kan efterlikna det fysiska systemets funktionalitet och kan därför erbjuda välbaserade indikationer på hur en förändring i design kommer att förändra prestandan.

I detta examensarbete designas en digital tvilling av kylsystemet i en elbåt med realistiska resultat. Kylsystem i elfordon är av stor betydelse eftersom den elektriska drivlinan blir varm under användning, vilket kan hindra fordonets prestanda. Detta gäller särskilt för högspänningsbatterierna som tenderar att ha ett ganska smalt temperaturintervall för optimal prestanda.

Denna avhandling behandlar ett försök att optimera kylsystemet, replikerat av den digitala tvillingen, genom att använda en temperaturförutsende modell. Tre olika maskininlärningsmodeller testades och den resulterande bästa modellen uppnådde ett genomsnittligt absolut fel på 2.4 och ett genomsnittligt procentuellt fel på 5.7. Modellen kunde dock inte förutse plötsliga temperaturspikar och -fall. En möjlig fix, som inte kunde testas i denna avhandling, skulle vara att implementera ytterligare indata såsom förarprofiler och/eller GPS-data med hastighetsbegränsningar.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology , 2022. , p. 65
Series
TRITA-EECS-EX ; 2022:759
Keywords [en]
Electric boat, cooling system, Digital Twin, temperature predictive model, machine learning
Keywords [sv]
Elektrisk båt, kylsystem, Digital Tvilling, temperaturförutsägande model, maskininlärning
National Category
Computer Sciences Computer Engineering Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-321756OAI: oai:DiVA.org:kth-321756DiVA, id: diva2:1712828
External cooperation
Xshore AB
Supervisors
Examiners
Available from: 2023-01-21 Created: 2022-11-22 Last updated: 2023-01-21Bibliographically approved

Open Access in DiVA

fulltext(2237 kB)513 downloads
File information
File name FULLTEXT01.pdfFile size 2237 kBChecksum SHA-512
e805ba76047908e6a30e31a40cad47a6e81f6d25cab7ec1279c379160541a23268a977f598194bf56ca18bf426bde344f58aae402b0f7105170459dd1d994f2c
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer SciencesComputer EngineeringComputer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 513 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 236 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf