kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Numerical Simulation of 3.3 kV–10 kV Silicon Carbide Super Junction-MOSFETs for High Power Electronic Applications
KTH, School of Electrical Engineering and Computer Science (EECS).
2022 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

The thesis focuses on designing and characterizing SiC 3.3 kV Diffused Metal-Oxide Semiconductor Field-Effect Transistor (DMOSFET)s with a Ron that is significantly lower than that of current commercial devices. The On-state resistance and breakdown voltage are then adjusted by adding a Super-Junction structure. Because of the pillar structure below the p-base area, the depletion will occur both vertically and horizontally and keeps the electric field distribution throughout the drift layer constant. The Super Junction Metal-Oxide Semiconductor Field-Effect Transistor (SJ MOSFET) has a good advantage compared to DMOSFETs. Due to its capacity to tolerate higher breakdown voltages and the fact that it does not require an increase in cell pitch to reach higher voltages, the Super-Junction approach is now the subject of effective research as compared to IGBTs and DMOSFETs. Silicon Carbide , a material with a wide bandgap that facilitates high temperature operation, high blocking voltage, high current flow and high switching frequency, is used to construct the device. In order to maintain a consistent electric field throughout the device, the concentration of the n and p pillars was chosen with a good charge balance between them. The outcomes of designing and simulating a DMOSFET, a Semi-SJ MOSFET, and a Full SJ MOSFET are compared in this research. The semi SJ device resulted in a Ron of 18.4 mΩcm2 and a Vb of 4.1 kV. The full SJ device reached a Ron of 12.4 mΩcm2 and a breakdown voltage of 4.2 kV. One optimized device was chosen from the semi SJ devices and used in several TCAD simulations, and the outcomes were evaluated based on the JFET width, pillar thickness, and charge imbalance between the p and n pillars. In this study, the device was also modelled for 6.5 kV and 10 kV SiC blocking voltage capabilities; the findings are also discussed.

Abstract [sv]

Denna uppsats fokuserar på att utveckla och karakterisera 3.3 kV kiselkarbidbaserade DMOSFET-transistorer med betydligt lägre framspänningsfall jämfört med kommersiella halvledarkomponenter. Framspänningsfallet och spärrspänningen modifieras genom att använda en pelarliknande halvledarstruktur i drift regionen, dvs. en super-junction [SJ] struktur. På grund av pelarstrukturen under p-bas området, uppträder utarmningsområdet av laddningsbärare både vertikalt och horisontellt och ger ett konstant elektriskt fält genom drift-regionen. Super-junction transistorer har flera fördelar jämfört med komponenter i DMOSFET struktur. På grund av sin kapacitet att motstå högre spärrspänningar och genom att strukturen inte behöver en större enhetscellbredd för att nå högre spärrspänning, så är just nu super-junction strukturer i stort forskningsfokus jämfört med IGBT och DMOSFET komponenter. Kiselkarbid, ett material med ett brett bandgap, möjliggör komponenter för höga temperaturer, höga spärrspänningar, höga elektriska strömmar, samt höga växlingsfrekvenser, har använts för att bygga de undersökta komponenterna. För att generera ett konstant elektriskt fält över drift-regionen, så har dopningsnivåerna för n- och p- pelarna valts för att hålla en bra laddningsbalans mellan dem. Simuleringsresultaten av dessa komponentstrukturer, DMOSFET, halv-SJ MOSFET, och hel-SJ MOSFET är jämförda i detta projekt. Halv-SJ MOSFET transistorn resulterade i ett framspänningsfall på 18.4 mΩcm2 och når en spärrspänning av 4.1 kV. Hel-SJ MOSFET strukturen uppnår ett framspänningsfall på 12.4 mΩcm2 och med spärrspänning av 4.2 kV. En optimerad halv-SJ struktur valdes ut för att genomföra ytterligare TCAD simuleringsstudier om effekterna av JFET bredd, pelartjocklek, samt laddningsobalans mellan n- och p- pelarna. I den här studien simulerades även komponentstrukturer för 6.5 kV och 10 kV spärrspänningsklasser; även dessa resultat diskuteras i rapporten.

Place, publisher, year, edition, pages
2022. , p. 41
Series
TRITA-EECS-EX ; 2022:760
Keywords [en]
Super–Junction, DMOSFET, 4H-SiC, Silicon Carbide, Wide bandgap, 6.5 kV, 10 kV, On-state resistance, Breakdown voltage
Keywords [sv]
Super–Junction, DMOSFET, 4H-SiC, kiselkarbid, bredbandgap, 6.5 kV, 10 kV, framspänningsfall, spärrspänning
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-321757OAI: oai:DiVA.org:kth-321757DiVA, id: diva2:1712829
External cooperation
Hitachi Energy
Supervisors
Examiners
Available from: 2023-01-21 Created: 2022-11-22 Last updated: 2023-01-21Bibliographically approved

Open Access in DiVA

fulltext(8819 kB)795 downloads
File information
File name FULLTEXT01.pdfFile size 8819 kBChecksum SHA-512
cdea9a7a558218057eab97520ebae609eb46c0a1b49669a1623d2ac744e510adc0b67bf47a60dbae91c81051c0ad224610426c51a29894ee08b34ccdaa1ee407
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 795 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 407 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf