kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Validation of heavy vehicle loading responses and temperature predictions in flexible pavements using field data
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials.ORCID iD: 0000-0002-0370-3866
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

It is well established that both traffic-related loading and environmental conditions influence the structural behaviour of pavements. Pavement design methods aim to consider the effect of traffic loading and environmental variables on pavement structure, foresee their changes during the lifetime of the pavement and predict the resulting distresses and pavement life. Newer models are required to further advance the development of pavement design methods. Validations using reliable and representative data are required prior to incorporating these models in pavement design methods.

The impact of environmental factors such as temperature, moisture content and freeze-thaw cycles on pavement behaviour have been examined in this doctoral thesis. Furthermore, the impact of increased loading by new long heavy vehicles on low-volume roads subjected to large variations of the environmental conditions has been investigated. The findings presented in this thesis have been based on field data collected on roads that have been and currently are in day-to-day operation. The collected data on mechanical response, temperature, moisture and frost was used to validate models on mechanical behaviour and thermal behaviour, as well as the effect of their interaction in pavement structures. 

The models developed and validated in this study are aimed to be integrated into a new mechanistic-empirical pavement design framework that is currently under development in Sweden. The work done for this thesis is presented hereby in the form of 5 papers and a short summary part. This thesis is a continuation of a licentiate thesis previously published at KTH Royal Institute of Technology. Part of the material published in the licentiate thesis has been included in this doctoral thesis.

In paper 1, air temperature data recorded over a span of 10 years from 44 meteorological stations and temperature data from built-in sensors in 49 pavement structures located in different locations throughout Sweden were analysed. The data was used to statistically correlate the freezing index, calculated using the mean daily air temperature and the frost penetration depth in the cross-section of the pavement. Comparisons were made for the results obtained for various climatic zones in the country. The output of the paper is a country-specific empirical chart obtained through exponential interpolation and nonlinear prediction limits that indicates a range of expected frost penetration depth based on historical air temperature data. 

Paper 2 presents a study in which the structural response of a test section was evaluated using built-in sensors. The instrumentation consisted of asphalt strain gauges (ASG) recording the tensile strain in the bottom of the asphalt layer, strain measuring units (εMU) recording the vertical strain in the granular layers, and soil pressure cells (SPC) recording the vertical stresses in the granular layers. Falling weight deflectometer (FWD) measurements were performed on the structure to backcalculate the stiffness of the layers from the measured surface deflections. The aim of the study was to evaluate the structural response of the structure under loading by three long heavy vehicles (LHV) weighing ~64 tonnes, ~68 tonnes, and ~74 tonnes and compare the resulting estimated accumulated damage from each vehicle. The main finding from the paper was that the damage caused to pavements by long heavy vehicles was slightly larger than the damage caused by shorter vehicles with fewer axles but higher axial loading and tyre pressure.

Paper 3 focuses on the effect of environmental factors and their variation on the structural behaviour of a thin pavement structure. Loading by long heavy trucks was applied to a test section at four different measurement campaigns performed at different seasons over one year. The variation of temperature and moisture in the structure was monitored continuously for the entire duration for which the study was performed. Thermocouples embedded in the asphalt layer and a frost rod placed in the granular layers were used to monitor the temperature variation in the structure. The moisture variation was monitored using time-domain reflectometer (TDR) probes. The correlation of the changes in temperature and moisture to the changes in mechanical stiffness of the layers was investigated. 

The instrumentation used to monitor the mechanical response, temperature variation, and moisture variation in the structure was found to be reliable for collecting data over the entire duration of the study. The main finding of the study is that it is possible to model the mechanical behaviour of thin pavement structures using multilayer elastic theory (MLET) calculations modelling, using linear-elastic material models if the stiffness of the asphalt layer is adjusted based on temperature and the stiffness of the granular layers is adjusted based on moisture levels.

In Paper 4, the same response testing procedure as in Paper 3 was performed for a second pavement structure with a thicker asphalt layer. Data from response testing results for 2 pavement structures on 4 different dates, with a focus on the spring thaw period, were considered in the paper. Three different strategies for material modelling were used to investigate the mechanical response of the pavement structures. The layers were initially modelled using linear material parameters and the response results were compared both to calculations in which a viscoelastic model was used for the asphalt layer and to calculations in which a nonlinear K-Theta model was used for the granular layers. 

Comparisons were made between the calculated response using each modelling strategy and the measured response values. It was found that the viscoelastic and nonlinear models provided only marginal improvements in the range of 1%-4% in predicting the mechanical response of the structures. Based on the results, it was concluded that the linear elastic model was sufficiently accurate in capturing the mechanical behaviour of both pavement structures, including at the critical locations.

Paper 5 presents the development and validation of a one-dimensional finite control volume (FCV) model capable of predicting temperature in pavements. The model is intended to be implemented into a new mechanistic-empirical pavement design framework currently under development in Sweden. The model uses easily obtainable meteorological data for air temperature, solar radiation, and wind speed for the three main modes of heat transfer, namely conduction, convection and radiation. 

To validate the model and estimate its accuracy, comparisons were made between the measured temperature and the calculated temperature values, using the FCV model. Comparisons were made for the pavement surface temperature, the temperature within the asphalt layer, and the temperature in the granular layers for 4 pavements located in different climatic zones in Sweden. In general, good agreement was found between the measured and calculated temperature values. Points for future improvements include better consideration of the surface properties, including the latent heat transfer in the calculations, and coupling the model to a moisture transfer model.

Abstract [sv]

Det är väl känt att både belastning från trafik och klimat påverkar vägars strukturella beteende. Strukturella dimensioneringsmetoder för vägar tar hänsyn till båda dessa belastningar och förutser deras inverkan på nedbrytningsförloppet under dimensioneringsperioden. Nya metoder och modeller är under utveckling som syftar till att utöka och förbättra förutsägelserna av vägars tillståndsförändringar och därmed nedbrytningsprocessen. Dessa modeller behöver valideras mot uppmätta data innan de börjar användas i allmänna dimensioneringsprogram. 

Denna doktorsavhandling undersöker påverkan av klimatfaktorer så som temperatur, fukt och frys-tö cyklar på vägars strukturella beteende. Dessutom har det undersökts hur långa och tungt lastade fordon påverkar tunna vägkonstruktioner vid olika klimatförhållanden. Avhandlingens slutsatser baseras på jämförelser av fullskaliga försök med tunga fordon som används på vägnätet i dag med beräkningar. Insamlad last- och töjningsdata från sensorer i vägkroppen som belastas med tung trafik samt vägtemperatur, fukt och frost har använts för att validera modeller för att beräkna den uppmätta mekanistiska samt termiska responsen i vägar. 

De modeller som har utvecklas och validerats har inkluderats i en ny mekanistisk – empirisk vägdimensioneringsmetodik som är under utveckling i Sverige. Resultaten presenteras här i fem artiklar samt i en kort sammanfattande del. Doktorsavhandlingen är en fortsättning av en Licentiatavhandling som tidigare har publicerats vid KTH. Delar av det arbetet är även inkluderat i denna avhandling. 

Den första artikeln redogör för korrelationen mellan frostindex och frostnedträngning i vägkonstruktioner. För detta har använts lufttemperaturdata som spänner över 10 år från 44 väderstationer samt temperaturmätningar i 49 vägkonstruktioner som täcker hela Sverige. 

Artikel 2 presenterar resultaten från jämförelser av uppmätt mekanistisk respons från inbyggda sensorer i en testväg med beräknade värden. De inbyggda sensorerna bestod av asfalttöjningsgivare (ASG) som mäter dragtöjning i horisontal riktning i underkant asfalt, töjningsgivare (εMU) som mäter vertikal töjning i olika lager i konstruktionen, samt spänningsdosor (SPC) som mäter vertikalt tryck i de obundna materialen. Fallviktsmätningar (FWD) gjordes för att bakberäkna lagrens styvheter. Målet var att bekräfta att den beräkningsmetod som har utvecklats kan fånga och förutsäga responsen i vägkonstruktionen som orsakas av tunga axelbelastningar. Tre långa och tunga fordon (LHV) användes för detta med totalvikt på 64, 68 och 74 ton. Nedbrytningseffekten av dessa tre fordon jämfördes inbördes och det kunde visas att de längsta lastbilarna orsakade mer nedbrytning jämfört med kortare lastbilar med färre axlar. 

Artikel 3 fokuserar på klimatets inverkan på det mekanistiska beteendet av tunna väguppbyggnader. Tunga lastbilar körde över en instrumenterad vägsträcka vid fyra olika tidpunkter inom loppet av ett år för att studera skillnaden i vägens beteende. Temperatur samt fukt registrerades kontinuerligt under perioden. Temperatursensorer samt tjälstav användes för att mäta temperaturen i vägen och en fuktstav med fuktgivare (TRD) för fuktkvoten. 

Instrumenteringen som användes för att samla den mekanistiska responsen, samt temperatur- och fuktvariationer visade sig vara robust och tillförlitlig. Jämförelse av uppmätt mekanistisk respons med beräknad respons genom att använda elastisk flerlagersteknik (MLET) där asfaltens och de obundna materials styvhet uppdaterades med registreringar från klimatvariablerna visade sig överensstämma väl.  

I artikel 4 användes samma teknik som presenterades i artikel 3 men nu för en väg med tjockare asfaltbeläggning. Data från responsmätningar från vägar under fyra olika tidsperioder undersöktes med huvudsyftet att studera beteendet under tjällossningsperioden. Tre olika strategier användes för att modellera det mekanistiska beteendet; dels elastiskt beteende av alla lager, dels viskös-elastiskt beteende av de asfalterade lagren och slutligen att de obundna materialen var spänningsberoende enligt den sk. k-theta modellen. 

Jämförelsen visade endast på en marginell förbättring (1-4%) med den viskös-elastiska eller den spänningsberoende strategierna jämfört med den linjärelastiska strategin. Det bestämdes därför att linjära modellen gav tillräcklig noggrannhet för att fånga responsens huvuddrag även i kritiska punkter. 

Artikel 5 presenterar utveckling och kalibrering av en-dimensionell finit kontroll volym (FCM) modell som förutsäger temperaturen i vägkonstruktioner. Modellen är redan nu implementerad i det nya mekaniska-empiriska ramverket för dimensionering av vägkonstruktioner i Sverige. Modellen använder meteorologiska indata; lufttemperatur, utstrålning och vindhastighet för att modulera de tre huvudprocesserna värmeledning, konvektion och strålning. 

Som validering och skattning av kvalitén av modellen har jämförelser gjorts med uppmätta temperaturer. Jämförelse har gjorts vid vägytan, i asfalten, samt i de obundna lagren. Fyra vägkonstruktioner i olika klimatzoner i Sverige har använts. Generellt fås en bra överensstämmelse. Det finns dock potential för förbättringar genom att bättre ta hänsyn till vägens ytegenskaper, överföring av latent värme samt genom att inkludera fukttransporter i de obundna materialen. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. , p. 73
Series
TRITA-ABE-DLT ; 2244
Keywords [en]
Flexible pavements, Long heavy vehicles, Instrumented test section, Field validation, Non-destructive testing, Temperature modelling
Keywords [sv]
Flexibla vägkonstruktioner, Tung trafikbelastning, Instrumenterade teststräckor, Fältvalidering, Oförstörande provning, Termisk modellering
National Category
Civil Engineering
Research subject
Civil and Architectural Engineering, Building Materials
Identifiers
URN: urn:nbn:se:kth:diva-321778ISBN: 978-91-8040-446-4 (print)OAI: oai:DiVA.org:kth-321778DiVA, id: diva2:1712989
Public defence
2022-12-16, U1, Brinellvägen 26, KTH campus, videolänk https://kth-se.zoom.us/j/64328878182, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
Swedish Transport Administration
Note

QC 20221125

Available from: 2022-11-25 Created: 2022-11-23 Last updated: 2022-11-25Bibliographically approved
List of papers
1. Correlating Air Freezing Index and Frost Penetration Depth: A Case Study for Sweden
Open this publication in new window or tab >>Correlating Air Freezing Index and Frost Penetration Depth: A Case Study for Sweden
2020 (English)In: Lecture Notes in Civil Engineering, Springer , 2020, Vol. 76, p. 847-857Chapter in book (Other academic)
Abstract [en]

The determination of frost penetration is one of the main requirements in considering environmental effects in pavement design in cold regions. At the present time, the frost depth of pavements in Sweden is estimated computationally using computer software which approximates the heat equation by finite difference. Due to the geographical positioning of Sweden, a wide range of air freezing index and frost penetration depths were observed with lower values in the south and higher values in the north. This paper introduces a simplified design chart which is obtained by empirically correlating the air freezing index estimated from temperature measurements by 44 local meteorological stations to the maximum frost penetration depth obtained by 49 RWIS Road Weather Information Station data. The results are classified depending on their location and the climatic zones defined by the Swedish pavement design codes. Nonlinear prediction intervals are implemented to provide a range of possible frost penetration depths since local site conditions are not taken into account. Further research is required to consider local on-site effects such as frost susceptibility of pavement materials, the thermal conductivity of layers, access to water and snow covering.

Place, publisher, year, edition, pages
Springer, 2020
Keywords
Infrastructure Engineering, Infrastrukturteknik
National Category
Geotechnical Engineering and Engineering Geology
Identifiers
urn:nbn:se:kth:diva-290890 (URN)10.1007/978-3-030-48679-2_79 (DOI)2-s2.0-85086986377 (Scopus ID)
Note

QC 20210225

Available from: 2021-02-25 Created: 2021-02-25 Last updated: 2025-02-07Bibliographically approved
2. Damage investigation of thin flexible pavements to Longer Heavier Vehicle loading through instrumented road sections and numerical calculations
Open this publication in new window or tab >>Damage investigation of thin flexible pavements to Longer Heavier Vehicle loading through instrumented road sections and numerical calculations
2021 (English)In: International Journal on Road Materials and Pavement Design, ISSN 1468-0629, E-ISSN 2164-7402Article in journal (Refereed) Published
Abstract [en]

Longer Heavier Vehicles provide an improvement in energy efficiency and environmental performance compared to traditional Heavy-Duty Vehicles. In Sweden, the maximum permissible vehicle gross weight has been increased from ∼64 to ∼74 tonnes without increasing the axle load limits. The consequence of this is investigated in this study. Response from two instrumented thin flexible pavements subjected to loading from three types of heavy vehicles (∼64, ∼68 and ∼74 tonnes) has been measured and the recordings were compared with numerical calculations based on 2D multilayer elastic calculations. Pavement damage contribution by the three vehicles was thereafter investigated. As long as the number of axles is increased to compensate for the increased vehicle loading and dual wheels are used, ∼74 tonnes vehicle are not more aggressive to the two thin pavement structures compared to the lighter vehicles with fewer axles but higher average axle loads and tyre pressure.

Place, publisher, year, edition, pages
Taylor & Francis, 2021
National Category
Civil Engineering
Identifiers
urn:nbn:se:kth:diva-290899 (URN)10.1080/14680629.2021.1899964 (DOI)000639695700001 ()2-s2.0-85104368983 (Scopus ID)
Note

QC 20210415

Available from: 2021-02-25 Created: 2021-02-25 Last updated: 2022-11-23Bibliographically approved
3. Seasonal Variation of the Structural Response of a Thin Instrumented Flexible Pavement under Heavy Vehicle Loading
Open this publication in new window or tab >>Seasonal Variation of the Structural Response of a Thin Instrumented Flexible Pavement under Heavy Vehicle Loading
2021 (English)Conference paper, Poster (with or without abstract) (Other academic)
Abstract [en]

The seasonal variations of the climatic factors such as temperature, moisture, and freeze-thaw cycles are known to influence the material properties and structural behavior of flexible pavement structures. Mechanistic models are required to predict the behavior of the structure throughout the entire year including the winter frost and spring thaw periods. In this study, the mechanical response of an instrumented flexible pavement structure located in the north of Sweden has been investigated at four different times during a year under loading by falling weight deflectometer and three different long heavy vehicles (~64, ~68 and ~74 ton). The mechanical response values recorded by the sensors embedded in the structure have been compared to the numerical model values obtained by 2D multilayer elastic calculations. It is shown that multilayer elastic theory provides a reasonable prediction of the mechanical behavior on the condition that the stiffness of the asphalt concrete is adjusted according to the temperature variations of the layer and the stiffness of the unbound granular layers is adjusted according to moisture content levels.

Place, publisher, year, edition, pages
Washington DC: , 2021
National Category
Civil Engineering
Research subject
Civil and Architectural Engineering
Identifiers
urn:nbn:se:kth:diva-290896 (URN)
Conference
Transportation Research Board 100th Annual Meeting
Note

QC 20210226

Available from: 2021-02-25 Created: 2021-02-25 Last updated: 2024-03-18Bibliographically approved
4. Evaluation of the structural response of two in-service thin flexible pavements under heavy vehicle loading during different seasons by built-in sensors
Open this publication in new window or tab >>Evaluation of the structural response of two in-service thin flexible pavements under heavy vehicle loading during different seasons by built-in sensors
2022 (English)In: The international journal of pavement engineering, ISSN 1029-8436, E-ISSN 1477-268X, p. 1-18Article in journal (Refereed) Published
Abstract [en]

Long Heavy Vehicles (LHV) are considered more efficient and environmentally friendly transportation of goods compared to conventional trucks. Thus, the maximum allowable gross vehicle weight (GVW) in Sweden was increased on part of the road network from 64 to 74 tons in 2018 by increasing the vehicles’ length and the number of axle groups per vehicle but not the axle load limits. This change in loading conditions is expected to lead to changes in the structural response and degradation rate of thin pavements on the low-volume road network. To improve our understanding of thin pavements behaviour exposed to multiple axle loadings two thin pavement structures located in the north of Sweden were instrumented with road response and climate sensors. Four measurement campaigns were carried out within one year by in-situ stress and strain measurements from the built-in sensors as LHV passes over at normal speed. The recorded response was compared with numerical calculations based on multilayer elastic theory (MLET). Values of stresses and strains showed a generally good agreement with high values of coefficient of determination R2 during different seasons when the asphalt stiffness values were adjusted based on temperature and granular layer stiffness values based on moisture.

Place, publisher, year, edition, pages
Informa UK Limited, 2022
National Category
Civil Engineering
Research subject
Civil and Architectural Engineering
Identifiers
urn:nbn:se:kth:diva-321774 (URN)10.1080/10298436.2022.2138875 (DOI)000876169900001 ()2-s2.0-85141186351 (Scopus ID)
Funder
Swedish Transport Administration
Note

QC 20221123

Available from: 2022-11-23 Created: 2022-11-23 Last updated: 2022-11-23Bibliographically approved
5. Development and validation of a pavement temperature profile prediction model in a mechanistic-empirical design framework
Open this publication in new window or tab >>Development and validation of a pavement temperature profile prediction model in a mechanistic-empirical design framework
(English)Manuscript (preprint) (Other academic)
National Category
Civil Engineering
Identifiers
urn:nbn:se:kth:diva-321775 (URN)
Note

QC 20221123

Available from: 2022-11-23 Created: 2022-11-23 Last updated: 2022-11-23Bibliographically approved

Open Access in DiVA

fulltext(4988 kB)357 downloads
File information
File name FULLTEXT03.pdfFile size 4988 kBChecksum SHA-512
8494107a53db4d3fa73d55e2f577d7e086408616ab3d0ba823f8a213f0f6ef1cfeb3ad3d54f6d420a545a737eea97064f31bfd5aaafff6639c0da3bce8d60bde
Type fulltextMimetype application/pdf

Authority records

Saliko, Denis

Search in DiVA

By author/editor
Saliko, Denis
By organisation
Building Materials
Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 358 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 590 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf