kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Estimating Believed Knowledge of Portfolio Agents Using Inverse Optimization
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2022 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

In this report, we demonstrate the utility of inverse optimization in convex programming by applying it on estimating financial market beliefs and behaviors of portfolio investors. The inversion of the optimization  utilized the Karush–Kuhn–Tucker optimality conditions specified for the current situation. The investor situation was simulated using the Markowitz model for optimal portfolio selection. Three model-specific implementations of inverse optimization were evaluated and the estimates were assessed by applying them in a solution to a portfolio agent sorting problem. The solution was perturbed with noise to test the robustness of the model.

The work concludes that estimation by inverse optimization of Markowitz models is possible to a satisfactory degree but requires case-specific model design. 

Abstract [sv]

I den här rapporten demonstreras användbarheten av invers optimering för konvexa problem genom att applicera det vid skattning av investerares beteenden och förväntningar av en finansiell marknad. Inverteringen av optimeringsproblemet gjordes med hjälp av   Karush–Kuhn–Tucker–villkor specifierade för det aktuella fallet.  Markowitz-modellen användes för att modellera en finansiell marknad och val av optimal portfölj av inversteringar.

Tre modell-specifika versioner av invers optimering tillämpades och deras skattningar utvärderades genom att applicera dem i lösning av ett problem där portföljägare skulle sorteras. Lösningsmetoden exponerades för brus för att testa modellens robusthet. Slutsatsen som görs är att tillfredsställande skattning med invers optimering av parametrar i Markowitz–modellen är möjligt, men kräver ändamålspecfik design av modellen.

Place, publisher, year, edition, pages
2022. , p. 105-114
Series
TRITA-EECS-EX ; 2022:134
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-321799OAI: oai:DiVA.org:kth-321799DiVA, id: diva2:1713231
Supervisors
Examiners
Projects
Kandidatexjobb i elektroteknik 2022, KTH, StockholmAvailable from: 2022-11-24 Created: 2022-11-24 Last updated: 2023-02-06Bibliographically approved

Open Access in DiVA

fulltext(146281 kB)323 downloads
File information
File name FULLTEXT01.pdfFile size 146281 kBChecksum SHA-512
6ef8ac5f57bfa731be6b63752e35a8ad576eee3fa90434c6241186b62dff01f689b0a22454b6d600dd2dfa06cfe9b879bd9a8193673765e6a41ac9b51260faf0
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 332 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 302 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf