kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Wave propagation in graded material composites with extraordinary properties
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.ORCID iD: 0000-0001-5396-141x
2022 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [sv]

I denna avhandling studeras elektromagnetisk vågutbredning i graderade materialkompositer med extraordinära egenskaper. Två sådana materialkompositsystem studeras särskilt, med hjälp av både analytiska och beräkningstekniska elektromagnetiska metoder.

Det första systemet används för utvecklingen av en lovande icke-invasiv metod för cancerbehandling, som bygger på att tumören med insatta guldnanopartiklar värms upp med hjälp av mikrovågsstrålning. En vågledarstruktur föreslås bestående av ett tunt dielektriskt skikt med en kontinuerlig graderad materialövergång till dess omgivande material till vardera sidan av skiktet. Det tunna lagret består av cancervävnad med insatta guldnanopartiklar som drivs in i elektroforetisk svängning med hjälp av elektromagnetisk strålning. Analytiska lösningar för det givna vågledarproblemet erhålls, vilket möjliggör beräkning av absorptionskoefficienterna endast inom det tunna skiktet, vilket är viktigt för bedömning av genomförbarheten av den tänkta medicinska tillämpningen. De dispersiva dielektriska modellerna som beskriver de elektromagnetiska egenskaperna hos de relevanta biologiska vävnaderna föreslås och diskuteras. Numeriska simuleringar gjorda i COMSOL Multiphysics är i utmärkt överensstämmelse med och validerar de analytiska resultaten.

Det andra systemet involverar vågutbredning från ett högerhänt material till ett vänsterhänt metamaterial i fri rymd. De två materialen är impedansmatchade, vilket säkerställer ingen reflektion, och det graderade gränssnittet mellan dem beskrivs av en kontinuerlig funktion. Metamaterialkompositer med rumsligt varierande materialparametrar har fått ett ökande teoretiskt och experimentellt intresse de senaste två decennierna. De är användbara för ett antal tillämpningar, såsom transformationsoptik. I denna uppsats diskuteras egenskaperna hos vänsterhänta material. Fältlösningarna till det impedansmatchade graderade gränssnittet härleds, och en numerisk modell utvecklas i COMSOL. Resultaten bekräftar de extraordinära egenskaperna hos vänsterhänta material.

Abstract [en]

In this thesis, electromagnetic wave propagation in graded material composites with extraordinary properties are studied. Two such material composite systems are studied in particular, using both analytical and computational electromagnetic methods.

The first system is used for the development of a promising non-invasive method of cancer treatment based on heating the tumors with inserted gold nanoparticles by means of microwave radiation. A waveguide structure is proposed consisting of a thin dielectric layer with a continuous graded material transition to its surrounding materials to either side of the layer. The thin layer consists of cancer tissue with inserted gold nanoparticles that are driven into electrophoretic oscillation by means of electromagnetic radiation. Analytical solutions for the given waveguide problem are obtained, allowing the calculation of the absorption coefficients within the thin layer only, which is important for assessment of the feasibility of the envisioned medical application. The dispersive dielectric models describing the electromagnetic properties of the relevant biological tissues are proposed and discussed. Numerical simulations done in COMSOL Multiphysics are in excellent agreement with and validate the analytical results.

The second system involves wave propagation from a right-handed material to a left-handed metamaterial in an open boundary system. The two materials are impedance-matched, thus ensuring no reflection, and the graded interface between them is described by a continuous function. Metamaterial composites with spatially varying material parameters have been given an increasing theoretical and experimental interest the last two decades. They are useful for a number of applications, such as transformation optics. In this thesis, the properties of left-handed media are discussed. The field solutions to the impedance-matched graded interface are derived, and a numerical model is developed in COMSOL. The results confirm the extraordinary properties of left-handed media.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. , p. vii, 33
Series
TRITA-EECS-AVL ; 2022:72
Keywords [en]
gradient-index, waveguides, gold nanoparticles, cancer treatment, left-handed media, negative index materials, metamaterials
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering Nano Technology Other Physics Topics
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-321787ISBN: 978-91-8040-406-8 (print)OAI: oai:DiVA.org:kth-321787DiVA, id: diva2:1713812
Presentation
2022-12-16, H1, Teknikringen 33, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20221129

Available from: 2022-11-29 Created: 2022-11-28 Last updated: 2022-11-29Bibliographically approved
List of papers
1. Analytical and Numerical Models for TE-Wave Absorption in a Graded-Index GNP-Treated Cell Substrate Inserted in a Waveguide
Open this publication in new window or tab >>Analytical and Numerical Models for TE-Wave Absorption in a Graded-Index GNP-Treated Cell Substrate Inserted in a Waveguide
2022 (English)In: Applied Sciences, E-ISSN 2076-3417, Vol. 12, no 14, p. 7097-, article id 7097Article in journal (Refereed) Published
Abstract [en]

In this paper, absorption phenomena in a hollow waveguide with an inserted graded dielectric layer are studied, for the case of transverse electric (TE) wave propagation. The waveguide model aims to be applicable to a study of a potential cancer treatment by heating of gold nanoparticles (GNPs) inside the cancer cells. In our previous work, general exact analytical fomulas for transmission, reflection, and absorption coefficients were derived. These fomulas are further developed here to be readily applicable to the calculation of the absorption coefficient within the inserted lossy layer only, quantifying the absorption in the GNP-fed cancer tissue. To this end, we define new exact analytic scale factors that eliminate unessential absorption in the surrounding lossy medium. In addition, a numerical model was developed using finite element method software. We compare the numerical results for power transmission, reflection and absorption coefficients to the corresponding results obtained from the new modified exact analytic fomulas. The study includes both a simple example of constant complex permittivities, and a more realistic example where a dispersive model of permittivity is used to describe human tissue and the electrophoretic motion of charged GNPs. The results of the numerical study with both non-dispersive and dispersive permittivities indicate an excellent agreement with the corresponding analytical results. Thus, the model provides a valuable analytical and numerical tool for future research on absorption phenomena in GNP-fed cancer tissue.

Place, publisher, year, edition, pages
MDPI AG, 2022
Keywords
waveguide, graded index, gold nanoparticles, optimal absorption, cancer treatment
National Category
Electrical Engineering, Electronic Engineering, Information Engineering Nano Technology
Identifiers
urn:nbn:se:kth:diva-316246 (URN)10.3390/app12147097 (DOI)000834488500001 ()2-s2.0-85137340298 (Scopus ID)
Note

QC 20220817

Available from: 2022-08-17 Created: 2022-08-17 Last updated: 2024-11-29Bibliographically approved
2. Analytical and Numerical Studies of Oblique Wave Incidence on Impedance-Matched Graded Interfaces between RHM and LHM Media
Open this publication in new window or tab >>Analytical and Numerical Studies of Oblique Wave Incidence on Impedance-Matched Graded Interfaces between RHM and LHM Media
2022 (English)In: Progress In Electromagnetics Research M, ISSN 1937-8726, Vol. 107, p. 131-140Article in journal (Refereed) Published
Abstract [en]

This paper presents analytical and numerical studies of electromagnetic wave propagation through an interface between a regular right-handed material (RHM) and a left-handed metamaterial (LHM). The interface is graded along the direction perpendicular to the boundary plane between the two materials, chosen to be the x-direction. The permittivity epsilon(omega, x) and permeability mu(omega, x) are chosen to vary according to hyperbolic tangent functions. We show that the field intensities for both TE-and TM-cases satisfy the same differential equations, and we obtain remarkably simple exact analytical solutions to Helmholtz' equations for lossy media. The obtained exact analytical results for the field intensities along the graded RHM-LHM composite confirm all the expected properties of RHM-LHM structures. Finally, we perform a numerical study of the wave propagation over an impedance-matched graded RHM-LHM interface, using the software COMSOL Multiphysics, and obtain an excellent agreement between the numerical simulations and analytical results. The results obtained in the present paper are not limited to any particular application, and are generally useful for all cases of wave propagation over impedance-matched two-and three-dimensional interfaces between RHM and LHM media. The advantage of the present method is that it can model smooth realistic material transitions, while at the same time including the abrupt transition as a limiting case. Furthermore, unlike previously existing solutions, the interface width is included as a parameter in the analytical solutions in a very simple way. This enables the use of the interface width as an additional degree of freedom in the design of practical RHM-LHM interfaces.

Place, publisher, year, edition, pages
ELECTROMAGNETICS ACAD, 2022
National Category
Computational Mathematics Other Electrical Engineering, Electronic Engineering, Information Engineering Fluid Mechanics
Identifiers
urn:nbn:se:kth:diva-308796 (URN)10.2528/PIERM21112701 (DOI)000748526100011 ()2-s2.0-85125064870 (Scopus ID)
Note

QC 20221108

Available from: 2022-02-14 Created: 2022-02-14 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

fulltext(10333 kB)441 downloads
File information
File name FULLTEXT01.pdfFile size 10333 kBChecksum SHA-512
d3dbfb4f5d9dd2349d5753f950699ff806aab408dc18ee42a2a38f5999ccc213b81655b03c63ef6cebb20afdadada09e77b2867638cf4b7ca25d1bad848592ee
Type fulltextMimetype application/pdf

Authority records

Svendsen, Brage B.

Search in DiVA

By author/editor
Svendsen, Brage B.
By organisation
Electromagnetic Engineering
Other Electrical Engineering, Electronic Engineering, Information EngineeringNano TechnologyOther Physics Topics

Search outside of DiVA

GoogleGoogle Scholar
Total: 441 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 490 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf