kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Potential accident tolerant fuel candidate: Investigation of physical properties of the ternary phase U2CrN3
KTH, School of Engineering Sciences (SCI), Centres, Centre for Nuclear Energy Technology, CEKERT.
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Engineering.ORCID iD: 0000-0003-2113-828X
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Engineering.ORCID iD: 0000-0002-0719-0893
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety.ORCID iD: 0000-0002-6082-8913
Show others and affiliations
2022 (English)In: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 568, article id 153851Article in journal (Refereed) Published
Abstract [en]

In the present study, physical properties of the ternary phase U2CrN3 are evaluated experimentally and by modeling methods. High density pellets containing the ternary phase were prepared by spark plasma sintering (SPS). The microstructural and crystallographic analyses of the composite pellets were performed using scanning electron microscopy (SEM), standardised energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD). Evaluation of the mechanical properties was performed by nanoindentation test. The impact of temperature on lattice properties was evaluated using high temperature X-ray diffraction (XRD) coupled with modeling. Progressive change in the lattice parameters was obtained from room temperature (RT) to 673 K, and the result was used to calculate average linear thermal expansion coefficients, as well as an input for the density functional theory (DFT) modeling to reassess the degradation of the mechanical properties. The ab-initio calculation provides an initial assessment of electronic configuration of this ternary phase in a direct comparison with one of UN phase. For this goal, modeling was also employed to evaluate point defect formation energies and electronic charge distribution in the ternary phase. Results indicate that the U2CrN3 phase has similar mechanical properties to UN (Young's, bulk, shear moduli, hardness). No preferential crystallographic orientation was observed in the composite pellet. However, charge electron density distribution highlights the significant directionality of chemical bonds, which is in agreement with the anisotropy and non-linear behaviour of the obtained thermal expansion (α¯(aa) = 9.12 × 10−6/K, α¯(ab) = 5.81 × 10−6/K and α¯(ac) = 6.08 × 10−6/K). As a consequence, uranium was found to be more strongly bound in the ternary structure which may delay diffusion and vacancy formation, promising an acceptable performance as nuclear fuel.

Place, publisher, year, edition, pages
Elsevier BV , 2022. Vol. 568, article id 153851
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-321965DOI: 10.1016/j.jnucmat.2022.153851ISI: 000879440400008Scopus ID: 2-s2.0-85132727972OAI: oai:DiVA.org:kth-321965DiVA, id: diva2:1713836
Note

QC 20221128

Available from: 2022-11-28 Created: 2022-11-28 Last updated: 2023-03-08Bibliographically approved
In thesis
1. Engineered microstructure composites as means of improving the oxidation resistance of uranium nitride
Open this publication in new window or tab >>Engineered microstructure composites as means of improving the oxidation resistance of uranium nitride
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Owing to its high uranium density and good thermophysical properties,

uranium nitride (UN) fuel has been considered as a potential Accident Tolerant

Fuel (ATF) candidate for use in Light Water Reactors (LWRs). However,

the main disadvantage of UN is its low oxidation resistance in water/steam

containing atmospheres at the operating temperatures of LWRs.

The main objective of this thesis is to investigate a concept of engineered

microstructure composites as means of improving the response of UN to waterside

corrosion. The methodology for incorporating the corrosion resistant

additives in the form of metals, nitrides and oxides into the UN matrix has

been developed and tested. The additives were proposed to produce coated

(no interaction with UN) or doped (incorporation of the additive into the

UN bulk) grains, which will be able to shield the UN from the oxidising environment

and slow down the oxygen diffusion through the bulk. The UN

composite pellets containing the selected additives were sintered using the

Spark Plasma Sintering (SPS) technique. The resulting microstructures of

the composite pellets were well characterised prior to subjecting some of the

engineered microstructure representative samples to oxidation testing in air

and steam containing environments.

The obtained results indicate that the response to air and steam oxidation

of the composite samples differs from that of pure UN. Moreover, a delay in

the oxidation onset was observed for the composite samples UN-20CrNpremix

and UN-20ZrNpremix in steam and for UN-20CrNpremix pellet in air. The

improved response to oxidation was accompanied by the formation of the

ternary oxides, an observation that could be applied to the screening process

of the additive candidates for waterproofing of UN.

Abstract [sv]

På grund av dess höga urandensitet och goda termofysiska egenskaper

har urannitrid (UN) ansetts vara ett potentiellt Accident Tolerant Fuel (ATF)

kandidat för användning i lättvattenreaktorer (LWR). Dock, den största nackdelen

med UN är dess låga oxidationsbeständighet i vatten/ånga-innehållande

atmosfärer vid driftstemperaturer för LWR.

Huvudsyftet med denna avhandling är att undersöka ett koncept för konstruerade

mikrostrukturkompositer som ett sätt att förbättra urannitridens

korrosionstolerans på vattensidan. Metodik för att införliva korrosionsbeständiga

tillsatser i form av metaller, nitrider och oxider i UN-matrisen har utvecklats

och testats. Tillsatserna föreslogs för att skapa en effekt av belagda

(ingen interaktion med UN) eller dopade (inkorporering av tillsatsen i

UN-matrisen) korn, som kommer att kunna skydda UN från den oxiderande

miljön eller bromsa syrediffusionen genom matrisen. UN kompositkutsar

innehållande de utvalda tillsatser har sintrats med tekniken Spark Plasma

Sintering (SPS). De resulterande mikrostrukturerna hos kompositkutsarna

karakteriserades väl innan några av de mikrostrukturrepresentativa proverna

utsattes för oxidationstestning i luft- och ångainnehållande miljöer.

De erhållna resultaten indikerar att svaret på luft- och ångaoxidation av

de sammansatta proverna skiljer sig från det för UN. Dessutom observerades

fördröjningen i oxidationsstarten för kompositproverna UN-20CrNförblandning

och UN-20ZrNförblandning  i  ånga och för UN-20CrNföblandning kutsar i luft.

Det förbättrade svaret på oxidation åtföljdes av bildningen av ternära oxider,

en observation som kunde tillämpas på screeningsprocessen av tillsatskandidaterna

för vattentätning av UN.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 77
Series
TRITA-SCI-FOU ; 2023:02
National Category
Other Materials Engineering
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-324614 (URN)978-91-8040-483-9 (ISBN)
Public defence
2023-03-31, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research
Note

QC 230910

Available from: 2023-03-10 Created: 2023-03-08 Last updated: 2023-03-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Mishchenko, YuliaPatnaik, SobhanCharatsidou, ElinaWallenius, JanneLopes, Denise Adorno

Search in DiVA

By author/editor
Mishchenko, YuliaPatnaik, SobhanCharatsidou, ElinaWallenius, JanneLopes, Denise Adorno
By organisation
Centre for Nuclear Energy Technology, CEKERTNuclear EngineeringNuclear Power Safety
In the same journal
Journal of Nuclear Materials
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 186 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf