kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deep Learning for Predicting Electrical Power in 5G
KTH, School of Electrical Engineering and Computer Science (EECS).
2022 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Djupinlärning för att förutspå elektrisk effekt för 5G (Swedish)
Abstract [en]

5G is currently being implemented around the world. A way to save resources in 5G could be to have several sector carriers sharing one power source. This requires being able to predict the electrical power of the sector carriers to make sure they do not exceed the capability of the power source. This thesis investigates deep learning for predicting the electrical power of a sector carrier. The chosen deep learning models are Multilayer perceptron (MLP) and Long short-term memory network (LSTM) and they are trained and evaluated on seven generated datasets from a sector carrier in Lund. The study consists of two parts, comparing the predictive performance between MLP and LSTM as well as determining the importance of each input feature on the predictions. It is concluded from the results that the MLP outperforms the LSTM in all datasets and should be the preferred model. The most important input feature for the predictions is by far the number of Resource elements (REs) used per slot. The number of Physical resource blocks (PRBs), modulation, scaling, number of streams and codebook indices have varying importance. The results can be used for guidance when implementing a real time system for which model and which input features to include. More work is required in investigating how the models perform on aggregated data from several sector carriers and determining if the models could feasibly be implemented for real time predictions.

Abstract [sv]

5G håller på att implementeras runtom i världen. Ett sätt att spara resurser i 5G skulle kunna vara att ha flera sektorbärare dela på en strömkälla. För att implementera detta behöver man kunna förutsäga effekten av sektorbärarna för att försäkra sig om att de inte kommer överstiga den maximala effekten strömkällan tillåter. I denna avhandling undersöks djupinlärning för att förutsäga effekten av en sektorbärare. De använda djupinlärningsmodellerna är Multilayer perceptron (MLP) och Long short-term memory (LSTM) och de tränas och utvärderas på sju stycken olika dataset genererade från en sektorbärare i Lund. Studien är uppdelad i två delar, en del där MLP och LSTM jämförs med hänsyn till deras prediktiva förmåga och en del där varje datavariabel utvärderas till hur viktig den är för modellernas förutsägelser. Från resultaten kunde slutsatsen dras att MLP presterar bättre än LSTM på alla sju dataset och att MLP bör väljas före LSTM. Den viktigaste datavariabeln är antalet resurs element med en signifikant skillnad jämfört med övriga datavariabler. Antalet fysiska resursblock, modulationen, skalningsfaktorn, antalet strömmar och kodboksindex har varierande viktighet. Resultaten kan användas som stöd för implementering av realtid system för att bestämma lämplig model och data. Mer arbete krävs för att undersöka hur modellerna presterar på data som är aggregerat från flera sektorbärare samt undersöka huruvida det är genomförbart att implementera ett realtid system för förutsägelser utifrån beräkningskraft och kostandsanalys.

Place, publisher, year, edition, pages
2022. , p. 51
Series
TRITA-EECS-EX ; 2022:660
Keywords [en]
5G, Deep learning, Machine learning, Predictions, Electrical power
Keywords [sv]
5G, Djupinlärning, Maskininlärning, Förutsägelser, Elektrisk effekt
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-321999OAI: oai:DiVA.org:kth-321999DiVA, id: diva2:1713873
External cooperation
Ericsson AB
Subject / course
Computer Science
Educational program
Master of Science - Computer Science
Supervisors
Examiners
Available from: 2022-12-02 Created: 2022-11-28 Last updated: 2022-12-02Bibliographically approved

Open Access in DiVA

fulltext(1044 kB)240 downloads
File information
File name FULLTEXT01.pdfFile size 1044 kBChecksum SHA-512
a46812cc92dfb885632a3643d81d09ac3fd7cdb32a40468ed4588ec718e4326b6ef063c87d360c74afa4082555bb5bb6f4a6ec8255513b6552e9304a23f51a95
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 240 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 368 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf