kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dynamics of Earth's bow shock under near-radial interplanetary magnetic field conditions
Denali Sci, Fairbanks, AK 99709 USA..
Univ Colorado, LASP, Boulder, CO 80303 USA..
NASA, Goddard Space Flight Ctr, Washington, DC 20546 USA.;Univ Maryland, College Pk, MD 20742 USA..
Show others and affiliations
2022 (English)In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 29, no 11, article id 112902Article in journal (Refereed) Published
Abstract [en]

We investigate the dynamics of Earth's quasi-parallel terrestrial bow shock based on measurements from the Magnetospheric MultiScale (MMS) spacecraft constellation during a period of near-radial interplanetary magnetic conditions, when the interplanetary magnetic field and the solar wind (SW) velocity are nearly anti-parallel. High-speed earthward ion flows with properties that are similar to those of the pristine SW are observed to be embedded within the magnetosheath-like plasma. These flows are accompanied by Interplanetary Magnetic Field (IMF) intensity of less than about 10 nT, compared to nearby magnetosheath intensities of generally greater than 10 nT. The high-speed flow intervals are bounded at their leading and trailing edges by intense fluxes of more energetic ions and large amplitude quasi-sinusoidal magnetic oscillations, similar to ultra-low frequency waves known to steepen and pileup on approach toward Earth to form the quasi-parallel bow shock. The MMS string-of-pearls configuration is aligned with the outbound trajectory and provides inter-spacecraft separations of several hundred km along its near 10(3) length, allowing sequential observation of the plasma and magnetic field signatures during the event by the four spacecraft. The SW-like interval is most distinct at the outer-most MMS-2 and sequentially less distinct at each of the trailing MMS spacecraft. We discuss the interpretation of this event alternatively as MMS having observed a quasi-rigid bow shock contraction/expansion cycle, ripples or undulations propagating on the bow shock surface, or a more spatially local evolution in the context of either a deeply deformed shock surface or a porous shock surface, as in the three-dimensional patchwork concept of the quasi-parallel bow shock, under the extant near-radial IMF condition. Published under an exclusive license by AIP Publishing.

Place, publisher, year, edition, pages
AIP Publishing , 2022. Vol. 29, no 11, article id 112902
National Category
Fusion, Plasma and Space Physics Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:kth:diva-322202DOI: 10.1063/5.0089937ISI: 000880805600006Scopus ID: 2-s2.0-85143394733OAI: oai:DiVA.org:kth-322202DiVA, id: diva2:1716459
Note

QC 20221206

Available from: 2022-12-06 Created: 2022-12-06 Last updated: 2023-06-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Raptis, Savvas

Search in DiVA

By author/editor
Raptis, Savvas
By organisation
Space and Plasma Physics
In the same journal
Physics of Plasmas
Fusion, Plasma and Space PhysicsAstronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 37 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf