kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Range Limits of Energy Harvesting from a Base Station for Battery-Less Internet-of-Things Devices
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS.ORCID iD: 0000-0003-2834-0317
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS. Linköping Univ, Dept Elect Engn, Linköping, Sweden..ORCID iD: 0000-0002-5954-434x
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS, Radio Systems Laboratory (RS Lab).ORCID iD: 0000-0003-4986-6123
2022 (English)In: Ieee International Conference On Communications (Icc 2022), Institute of Electrical and Electronics Engineers (IEEE) , 2022, p. 153-158Conference paper, Published paper (Refereed)
Abstract [en]

Wireless power transfer (WPT) is an alternative technology to conventional batteries for powering Internet of things (IoT) devices. WPT is especially beneficial in situations when battery replacement is infeasible or expensive. It can also reduce battery-related e-waste. In this paper, we analyze the limits of adopting WPT technology for remote powering of IoT devices. We assume that an IoT device periodically harvests energy from a base station (BS) and transmits a data packet related to the sensor measurement under shadow fading channel conditions. Our goal is to characterize the epsilon-coverage range, where epsilon is the probability of the coverage. Our analysis shows a tradeoff between the coverage range and the rate of sensor measurements, where the maximal epsilon-coverage range is achieved as the sensor measurement rate approaches zero. We demonstrate that the weighted sum of the sleep power consumption and the harvesting sensitivity power of an IoT device limits the maximal e-coverage range. Beyond that range, the IoT device cannot harvest enough energy to operate. The desired rate of the sensor measurements also significantly impacts the epsilon-coverage range. Our results suggest that for an IoT device designed using current technology, the maximal 0.95-coverage range is in the order of 120 m. When high measurement rates are required, the coverage range drops to 50-100 m. Compared to battery-powered IoT devices, WPT is well-suited for medium-range applications plus when battery replacement is costly.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2022. p. 153-158
Series
IEEE International Conference on Communications, ISSN 1550-3607
Keywords [en]
Electronic waste, Energy harvesting, Internet of things, transceivers, wireless power transfer, wireless sensor networks
National Category
Communication Systems
Identifiers
URN: urn:nbn:se:kth:diva-322312DOI: 10.1109/ICC45855.2022.9839237ISI: 000864709900026Scopus ID: 2-s2.0-85137264778OAI: oai:DiVA.org:kth-322312DiVA, id: diva2:1718173
Conference
IEEE International Conference on Communications (ICC), MAY 16-20, 2022, Seoul, SOUTH KOREA
Note

Part of proceedings: ISBN 978-1-5386-8347-7

Not duplicate with DiVA 1638446

QC 20221212

Available from: 2022-12-12 Created: 2022-12-12 Last updated: 2024-02-08Bibliographically approved
In thesis
1. RF Energy Harvesting for Zero-Energy Devices and Reconfigurable Intelligent Surfaces
Open this publication in new window or tab >>RF Energy Harvesting for Zero-Energy Devices and Reconfigurable Intelligent Surfaces
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
RF energiutvinning för nollenergienheter och omkonfigurerbara intelligenta ytor
Abstract [en]

The growth of Internet of Things (IoT) networks has made battery replacement in IoT devices increasingly challenging. This issue is particularly pronounced in scenarios with a large number of IoT devices, in locations where IoT devices are difficult to access, or when frequent replacement is necessary. The risk of losing or forgetting some IoT devices also exists, leading to a risk of hazardous chemical leakage and e-waste in nature. Radio Frequency(RF) wireless power transfer (WPT) offers an alternative solution for powering these devices. Moreover, it has been observed that the receivers absorb less than one-millionth of the transmitter energy while surrounding objects absorb the remainder. This situation opens up the possibility of leveraging existing wireless infrastructures, such as base stations (BSs), to charge IoT devices. In this thesis, we focus on analyzing the feasibility and limitations of battery-less operation of IoT devices using RF WPT technology, along with energy harvesting (EH) from existing wireless communication infrastructure. We explore both indoor and outdoor scenarios for powering IoT devices. Initially, we consider an outdoor environment where an IoT device periodically harvests energy from existing BSs and transmits a data packet related to sensor measurement. We analyze the coverage range of energy harvesting from a BS for powering IoT devices, which shows a tradeoff between the coverage range and the rate of sensor measurements. Additionally, we compare the operational domain in terms of the range and measurement rate for WPT and battery-powered technologies. Furthermore, we consider the coverage probability for a multi-site scenario, which is the likelihood that a randomly allocated IoT device harvests enough power to enable its operation. We derive an expression for this probability at a random location in terms of harvesting sufficient power for IoT device operation at a given measurement rate. Next, we consider the remote powering of IoT devices inside an aircraft. Wired sensors add weight and maintenance costs to the aircraft. Although replacing data cables with wireless communication reduces costs and simplifies deployment, providing power cables for the sensors remains challenging. We assume fixed locations for IoT devices inside an aircraft. The goal is to minimize the number of WPT transmitters for a given cabin geometry and IoT device duty cycles. We address WPT system design under channel uncertainties through robust optimization. Following this, we turn our attention to energy harvesting at a reconfigurable intelligent surface (RIS). The potential benefits of using RIS compared to traditional relays when it comes to improving wireless coverage have been debated in previous works, under the assumption that both technologies have a wired power supply. The comparison would be entirely different if the RIS can become self-sustaining, which is not possible for relays. Therefore, we explore energy harvesting for RIS, proposing an algorithm for phase adjustment to maximize energy harvesting from RF sources based on power measurements. Lastly, we explore the charging of zero-energy devices (ZEDs) via a RIS. Mitigating the path loss in WPT requires large antenna arrays, which leads to increased hardware complexity, as it demands an RF chain per antenna element. Alternatively, RIS offers high beamforming gain with simpler hardware. Therefore, we consider RIS-assisted RF charging of ZEDs. We develop dynamic algorithms for battery-aware and queue-aware scenarios, adjusting RIS phases and transmission power to meet the requirements.

Abstract [sv]

Ökningen av antalet Internet of Things (IoT)-nätverk har gjort batteri-byte i IoT-enheter alltmer utmanande. Detta problem är särskilt besvärligt i scenarier med ett stort antal IoT-enheter, på platser där IoT-enheter är svåra att komma åt, eller när frekventa batteribyten är nödvändiga. Risken att förlora eller glömma bort vissa IoT-enheter finns också, vilket leder till en risk för farligt kemiskt läckage och elektronikskrot i naturen. Trådlös energiöverföring(eng. wireless power transfer, WPT) via radiofrekvens-signaler erbjuder en alternativ lösning för att strömförsörja dessa enheter. När en trådlösa sändare skickar signaler når mindre än en miljondel av energin till de tilltänkta mottagarna,medan resten absorberas av omgivningen. Denna situation skapar möjligheten att utnyttja befintlig trådlös infrastruktur, såsom basstationer,för att ladda IoT-enheter med WPT-teknik. I denna avhandling fokuserar vi på att analysera genomförbarheten och begränsningarna av batterilös drift av IoT-enheter med radiofrekvens-WPT-teknologi, tillsammans med energi utvinningfrån befintlig trådlös kommunikationsinfrastruktur. Vi utforskar energiförsörjning av IoT-enheter både i inomhus- och utomhusscenarier.

Först utforskar vi en utomhusmiljö där en IoT-enhet periodiskt skördar energi från befintliga basstationers signaler och använder den till att sända datapaket relaterade till sensormätningar. Vi analyserar täckningsområdet runten basstation för energiutvinning, vilket visar en avvägning mellan räckvidd och sensormätningens frekvens. Vi jämför WPT-lösningen med batteridrivna teknologier. Därefter analyserar vi täckningssannolikheten i ett fall medmånga basstationer. Detta är sannolikheten att en slumpmässigt placeradIoT-enhet kan skörda tillräckligt med kraft för sin drift. Vi härleder ett uttryck för denna sannolikhet för en given mätningfrekvens.

Därefter analyserar vi energiförsörjning till IoT-enheter inuti ett flygplan.Kabelanslutna sensorer adderar vikt och underhållskostnader till flygplan.Även om kostnaderna minskar ifall datakablar ersätts med trådlös kommunikation så krävs fortfarande strömkablar, men dessa kan eventuellt ersättasmed WPT. Vi antar att IoT-enheterna har förutbestämda placeringar inuti ett flygplan. Målet är att minimera antalet WPT-sändare med hänsyn till kabinens geometri och IoT-enheternas driftcykler. Vi adresserar WPT systemdesign under kanalosäkerheter genom robust optimering.

Efter detta vänder vi vår uppmärksamhet mot energiutvinning för en omkonfigurerbar intelligent yta (eng. reconfigurable intelligent surface, RIS). De potentiella fördelarna med RIS jämfört med traditionella reläer när det gäller att förbättra trådlös täckning har debatterats i tidigare arbeten, under antagandet att båda teknikerna är kabelanslutna till en strömkälla. Jämförelsen blir en annan ifall vi kan göra RIS självförsörjande, eftersom detta inte är möjligt för reläer. Därför utforskar vi trådlös energiutvinning för RIS och föreslår en algoritm för fasjustering för att maximera energiutvinning från radiofrekvens-signaler baserat på energimätningar.

Slutligen utforskar vi laddning av nollenergienheter (eng. zero-energy devices,ZED) med stöd av en RIS som reflekterar signaler mot enheterna. Föratt motverka utbredningsförlusterna i WPT krävs traditionellt stora gruppantennerpå basstationen, vilket leder till ökad hårdvarukomplexitet, eftersomivdet kräver en radio per antennelement. Alternativt erbjuder RIS hög lobformningsvinstmed enklare hårdvara. Därför analyserar vi RIS-assisterad WPTladdningav ZED. Vi utvecklar dynamiska algoritmer för batterimedvetna ochkömedvetna scenarier där vi justerar RIS-faser och sändningseffekten för attuppfylla kraven.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. p. xx, 134
Series
TRITA-EECS-AVL ; 2024:15
Keywords
Electronic waste, energy harvesting, Internet of Things, optimization, phased array, reconfigurable intelligent surfaces, stochastic geometry, wireless power transfer, wireless sensor networks, zero-energy devices., Elektronikskrot, energiutvinning, sakernas internet, optimering, fasstyrda antenner, omkonfigurerbara intelligenta ytor, stokastisk geometri, trådlös kraftöverföring, trådlösa sensornätverk, nollenergienheter.
National Category
Communication Systems
Research subject
Information and Communication Technology
Identifiers
urn:nbn:se:kth:diva-343226 (URN)978-91-8040-839-4 (ISBN)
Public defence
2024-03-06, https://kth-se.zoom.us/j/67657421796, Ka-Sal B, Electrum, Kistagången 16, plan 2, Kista, Stockholm, 13:00
Opponent
Supervisors
Note

QC 20240214

Available from: 2024-02-14 Created: 2024-02-08 Last updated: 2024-02-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Tavana, MortezaBjörnson, EmilZander, Jens

Search in DiVA

By author/editor
Tavana, MortezaBjörnson, EmilZander, Jens
By organisation
Communication Systems, CoSRadio Systems Laboratory (RS Lab)
Communication Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 78 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf