Open this publication in new window or tab >>2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
This thesis aims to address the challenge of generating task plans for robots in industry-relevant scenarios. With the increase in small-batch production, companies require robots to be reprogrammed frequently for new tasks. However, maintaining a team of operators with specific programming skills is only cost-efficient for large-scale production. The increase in automation targets companies where humans share their working environment with robots, expanding the scope of manufacturing applications. To achieve that, robots need to be controlled by task plans, which sequence and optimize the execution of actions. This thesis focuses on generating task plans that are reactive, transparent and explainable, modular, and automatically synthesized. These task plans improve the robot’s autonomy, fault-tolerance, and robustness. Furthermore, such task plans facilitate the collaboration with humans, enabling intuitive representations of the plan and the possibility for humans to prompt instructions at run-time to modify the robot’s behavior. Lastly, autonomous generation decreases the programming skills required for the operator to program a robot, and optimizes the task plan. This thesis discusses the use of Behavior Trees (BTs) as policy representations for robotic task plans. It compares the modularity of BTs and Finite State Machines (FSMs) and concludes that BTs are more effective for industrial scenarios. This thesis also explores the automatic and intuitive generation of BTs using Genetic Programming and Learning from Demonstration methods, respectively. The proposed methods aim to time-efficiently evolve BTs for mobile manipulation tasks and allow non-expert users to intuitively teach robots manipulation tasks. This thesis highlights the importance of user experience in task solving and how it can benefit evolutionary algorithms. Finally, it proposes the use of previously learned BTs from demonstration to intervene in the unsupervised learning process.
Abstract [sv]
Den här avhandlingen syftar till att ta itu med utmaningen att generera uppgiftsplaner för robotar i industriella scenarier. Med ökningen av småskalig produktion kräver företag att robotar omprogrammeras frekvent för nya uppgifter. Att upprätthålla en grupp operatörer med specifika programmeringsfärdigheter är dock endast kostnadseffektivt för storskalig produktion. Ökningen av automation riktar sig till företag där människor delar sin arbetsmiljö med robotar och utökar omfattningen av tillverkningsapplikationer. För att uppnå detta måste robotar styras av uppgiftsplaner som sekvenserar och optimerar utförandet av åtgärder. Denna avhandling fokuserar på att generera uppgiftsplaner som är reaktiva, transparenta och förklarbara, modulära och automatiskt syntetiserade. Dessa uppgiftsplaner förbättrar robotens autonomi, feltolerans och robusthet. Dessutom underlättar sådana uppgiftsplaner samarbetet med människor genom att möjliggöra intuitiva representationer av planen och möjligheten för människor att ge instruktioner vid körningstid för att ändra robotens beteende. Slutligen minskar autonom generering programmeringsfärdigheterna som krävs för att operatören ska kunna programmera en robot och optimerar uppgiftsplanen. Denna avhandling diskuterar användningen av beteendeträd (BTs) som policyrepresentationer för robotiska uppgiftsplaner. Den jämför moduleringen av BT och deterministiska tillståndsmaskiner (FSMs) och drar slutsatsen att BTs är mer effektiva för industriella scenarier. Denna avhandling utforskar också den automatiska och intuitiva generationen av BTs med hjälp av genetisk programmering och lärande från demonstrationsmetoder, respektive. De föreslagna metoderna syftar till att tidsmässigt utveckla BTs för mobila manipulationuppgifter och tillåta icke-experter att intuitivt lära robotar manipulationsuppgifter. Denna avhandling belyser vikten av användarupplevelsen i uppgiftslösning och hur den kan gynna evolutionära algoritmer. Slutligen föreslår den användningen av tidigare inlärda BTs från demonstration för att ingripa i den oövervakade inlärningsprocessen.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. xi, 127
Series
TRITA-EECS-AVL ; 2023:46
Keywords
Collaborative Robotics, Behavior Trees
National Category
Robotics
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-327210 (URN)978-91-8040-594-2 (ISBN)
Public defence
2023-06-12, https://kth-se.zoom.us/j/64592198901, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 20230523
2023-05-232023-05-222023-06-27Bibliographically approved