kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Predictions of Electricity Prices in Different Time Periods With Lasso
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2022 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

When the big data time comes, people also need to keep pace with the times to seek and develop tools that can deal with the vast amount of information. In this project, lassois applied to build parametric models of electricity prices based on different affecting factors. Thereafter, the models are used to predict the electricity prices 8 days forward for three different time periods. We compare their prediction performances in terms of normalized mean square error (NMSE) and identify dominant factors of the electricity prices in different time periods using lasso. The results show that a model that spans over a 24 hourlong period gives the lowest NMSE, followed by one spanning over a two hour long period where the electricity prices are leading up to a peak value. The model that obtains the highestNMSE is from a two hour long period, where the electricity prices have a peak value. Besides, we also analyze potential reasons for the results.

Abstract [sv]

När big data-tiden kommer måste även människor hålla jämna steg med tiderna för att söka och utveckla verktyg som kan hantera den stora mängden information. I detta projekt används lasso för att bygga parametriska modeller av elpriser baserade på olika påverkansfaktorer. Därefter används modellerna för att förutsäga elpriserna 8 dagar framåt för tre olika tidsperioder. Vi jämför deras prediktionsprestanda i termer av normaliserat medelkvadratfel (NMSE) och identifierar dominerande faktorer för elpriserna under olika tidsperioder med hjälp av lasso. Resultaten visar att en modell som sträcker sig över en 24 timmar lång period ger lägst NMSE värde, följt av en som sträcker sig över en två timmar lång period där elpriserna leder fram till ett toppvärde. Modellen som får högst NMSE är från en två timmar lång period, där elpriserna har ett toppvärde. Dessutom analyserar vi också potentiella orsaker till resultaten.

Place, publisher, year, edition, pages
2022. , p. 75-81
Series
TRITA-EECS-EX ; 2022:128
Keywords [en]
Electricity price prediction, linear model, lasso, affecting factors
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-322717OAI: oai:DiVA.org:kth-322717DiVA, id: diva2:1723044
Supervisors
Examiners
Projects
Kandidatexjobb i elektroteknik 2022, KTH, StockholmAvailable from: 2023-01-02 Created: 2023-01-02

Open Access in DiVA

fulltext(146281 kB)352 downloads
File information
File name FULLTEXT01.pdfFile size 146281 kBChecksum SHA-512
6ef8ac5f57bfa731be6b63752e35a8ad576eee3fa90434c6241186b62dff01f689b0a22454b6d600dd2dfa06cfe9b879bd9a8193673765e6a41ac9b51260faf0
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 352 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 288 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf