kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Data-Driven Damage Detection and Control Adaptation for an Autonomous Underwater Vehicle
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0001-5656-0259
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0001-9516-6764
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control). KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, ACCESS Linnaeus Centre.ORCID iD: 0000-0001-7309-8086
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Optimization and Systems Theory. KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0002-7714-928X
2022 (English)In: 61st IEEE Conference on Decision and Control (CDC), 2022, 2022Conference paper, Published paper (Refereed)
Abstract [en]

Underwater robotic exploration missions typically involve traveling long distances without any human contact.The robots that go on such missions risk getting damaged by the unknown environment, accruing great costs and missed opportunities.Thus it is important for the robot to be able to accommodate unknown changes to its dynamics as much as possible and attempt to finish the given mission, or at the very least move itself to a retrievable position.

In this paper, we show how we can detect physical changes to the robot reliably (79\% on real robot data) and then incorporate these changes through adapting the model to the data followed by automated control redesign. We adopt a piecewise-affine (PWA) modelling of the dynamics that is well suited for low data regime learning of the dynamics and provides a structure for computationally efficient control synthesis.We demonstrate the effectiveness of the proposed method on a combination of real robot data and simulated scenarios.

Place, publisher, year, edition, pages
2022.
Keywords [en]
Underwater vehicles, robotics, auv, control, fault adaptation, svgp, gp
National Category
Robotics and automation
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-322736DOI: 10.1109/CDC51059.2022.9993101ISI: 000948128102124Scopus ID: 2-s2.0-85146989615OAI: oai:DiVA.org:kth-322736DiVA, id: diva2:1723179
Conference
Conference on Decision and Control (CDC)
Funder
Swedish Foundation for Strategic Research, IRC15-0046
Note

QC 20230117

Available from: 2023-01-02 Created: 2023-01-02 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Multi-Agent Mission Planning and Execution for Small Autonomous Underwater Vehicles
Open this publication in new window or tab >>Multi-Agent Mission Planning and Execution for Small Autonomous Underwater Vehicles
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Our planet is mostly covered in water, most of it still unexplored.In order to understand our environment better, oceanographers have been mapping and monitoring these waters using ship-mounted sensors and wired vehicles with limited range compared to the vastness of the oceans.The limited range and dependence on manned support vehicles has kept missions expensive and infrequent.To solve this problem, the sensors need to become independent of support vehicles, they need to venture into completely unexplored, unmapped regions of the seas by themselves and safely return with the data.This is where autonomous underwater vehicles (AUVs) have started to make a difference.In this thesis we investigate how multiple small AUVs can be utilized to efficiently and accurately sense very large volumes of water.

Water absorbs electromagnetic radiation, meaning satellite-based global positioning systems (we will use GPS to refer to any such system), wide-angle cameras and radio communications are infeasible.These constraints ultimately result in uncertain localization of  the vehicles.Furthermore, the vehicles are under constant disturbances from the water currents, fish and bio-fouling, which result in the dynamics of the vehicles being uncertain or even changing during the mission.

In the first part of this thesis, we focus on the large-scale sensing problem under localization uncertainties by examining the caging and coverage problems.In the coverage problem, each AUV is uncertain about its exact position while tasked with sensing a stationary area.We show that we can still guarantee complete coverage and formulate the efficiency characteristics of different approaches.Furthermore, we show that when the vehicles are equipped with sensors and low-bandwidth communication methods, we can increase the effective range of a team of AUVs considerably by utilizing loop-closures over shared pose-graphs. In the caging problem, the localization uncertainty is focused on the entity that is being caged, its location is unknown but bounded.We show that through a combination of algorithms, the caging problem can be solved and a solution can be guaranteed, while simultaneously producing a list of specifications for the mission.

In the second part, we focus on the individuals of the team and what they need to do in order for the team of AUVs to succeed.First, we identify that when there is a team of cooperative vehicles working together, conflicting goals rise.Each vehicle needs to pick between satisfying its own constraints and the constraints that come from being in a team. We propose a solution to this problem through a combination of Control Barrier Function (CBF) and Behavior Trees (BT).Secondly, we examine the possibility that a vehicle might undergo physical changes, like a broken thruster, that result in the vehicle being unable to complete the entire mission.Even in such a scenario, if the broken vehicle can still move to contact a normal one, the rest of the team can compensate through re-planning and the overall mission can still be completed.To do so, the broken vehicle must compensate for the change until a rendezvous.We propose a data-driven pipeline that can detect and plan around such a physical change within some bounds.

Abstract [sv]

Vår planet är till största delen täckt av sjöar och hav, och en stor del av dessa är fortfarande outforskade. För att bättre förstå vår omvärld har oceanografer undersökt sjöar och hav med sensorer som antingen varit fast monterade på stora bemannade fartyg, eller på undervattensfarkoster som styrtsvia kablar från sådana fartyg. Detta beroende av fartyg har gjort uppdragen dyra och därför även få. För att lösa detta problem måste sensorplattformarna göras oberoende av kablar och bemannade fartyg, och ges förmåga att på egen hand bege sig in i outforskade områden och sedan komma tillbaka igen med ny information. Sådana sensorplattformar kallas AUV, Autonomous Underwater Vehicles, och i denna avhandling undersöker vi hur en grupp AUV:erkan användas för att söka av stora vattenvolymer på egen hand. Undervattensdomänen är förknippad med ett antal unika problem. Vatten absorberar elektromagnetisk strålning, vilket gör satellitnavigering (t.ex.GPS) och radiokommunikation oanvändbart i praktiken, vilket i sin tur leder till att det är svårt att bestämma sin egen position under vattnet. Vidare gör strömmar, vattendjur och s.k. biofouling (att t.ex. alger och smådjur växer där man inte vill ha dem) att en farkosts dynamik kan ändras över tid i vattnet.

I denna avhandlings första del studerar vi storskalig övervakning under positionsosäkerheter i form av instängnings- (caging) och yttäcknings-problem(coverage). I yttäckningsproblemet skall UAV:n söka av en given yta, samtidigt som UAV:n är osäker på sin egen position. Vi visar att det trots detta är möjligt att garantera total täckning av ytan, och beskriver hur effektiva olika sökmönster är för denna uppgift. Vidare visar vi hur en grupp av UAV:er utrustade med sensorer och akustiska modem med låg bandbredd kan lösadenna uppgift mer effektivt än enskilda UAV:er, genom s.k. loop closures och delande av tillståndsgrafer. I instängningsproblemet gäller positionsosäkerheten istället en inkräktare, t.ex. en fientlig ubåt, vars position är känd på ett ungefär, men inte exakt. Vi visar att man kan bestämma positionen exakt genom en kombination av algoritmer som först stänger in inkräktaren och sedan gradvis krymper den volym den kan uppehålla sig i. Vi beräknar också vilka prestanda systemet måste uppfylla för att kunna garantera instängning. I avhandlingens andra del fokuserar vi på de enskilda AUV:erna, och vad de måste göra för att hela gruppen skall lyckas med sitt uppdrag. Först noterar vi att när en grupp samarbetar så kommer det att uppstå målkonflikter. Vid vissa tidpunkter kommer individer att tvingas välja mellan egna mål, som t.ex. att inte få slut på batteri, och gruppens mål, som t.ex. att täcka av ett område. Vi föreslår en lösning till detta problem som bygger på kombinationen av s.k. Control Barrier Functions (CBF) och Beteendeträd (BT). Sedan undersöker vi fallet då en AUV påverkas av förändringar, så som en skadad propeller, som gör att den inte kan fullgöra den ursprungliga uppgiften. I ett sådant scenario vill man att den skadade farkosten skall försöka ta sig till en punkt där den kan kontakta resten av gruppen, så att de kan kompensera bortfallet. Vi föreslår en data-driven metod för som kan upptäcka och hantera vissa typer av sådana fel.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2023. p. 57
Series
TRITA-EECS-AVL ; 2023:5
Keywords
Underwater vehicles, collaborative, robotics, auv, navigation, coverage, search, slam, graph-slam, communication, control barrier functions, control, swarms, caging, capture
National Category
Robotics and automation
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-322817 (URN)978-91-8040-453-2 (ISBN)
Public defence
2023-02-02, https://kth-se.zoom.us/j/63193775118, F3, Lindstedtsvägen 26, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, IRC15-0046
Note

QC 20230109

Available from: 2023-01-09 Created: 2023-01-06 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

fulltext(1880 kB)206 downloads
File information
File name FULLTEXT01.pdfFile size 1880 kBChecksum SHA-512
841c880845e1be5152e2e2a08e6c643f21f908a9605b3ca632809bbe32ff36c3fce4aef0cf3a539ac8d081b6fb24257ad3e59572aee014a49a9fba0d7f9e5db4
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Özkahraman, ÖzerTajvar, PouriaDimarogonas, Dimos V.Ögren, Petter

Search in DiVA

By author/editor
Özkahraman, ÖzerTajvar, PouriaDimarogonas, Dimos V.Ögren, Petter
By organisation
Robotics, Perception and Learning, RPLDecision and Control Systems (Automatic Control)Centre for Autonomous Systems, CASACCESS Linnaeus CentreOptimization and Systems Theory
Robotics and automation

Search outside of DiVA

GoogleGoogle Scholar
Total: 206 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 497 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf