kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modeling of Hydro-Power in Spine - Optimizing Electricity Production With a Piece-Wise Linear
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2022 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Hydropower plays an important role in the Swedish power system and is a valuable renewable energy source with great ability for regulation. It is, therefore, crucial to plan and optimize hydropower in a way that is effective. In this project, the Skellefte River is modeled with the software Spine. The focus is on applying a piece-wise linear function to describe the electricity production, instead of a simpler linear one, and optimizing the profit. The results of the optimization indicate that the piece-wise linear function gives accurate values on the electricity production. This work has also further contributed to the development of Spine.

Abstract [sv]

Vattenkraft spelar en viktig roll i det svenska elsystemet och är en värdefull förnybar energikälla med stor regleringsförmåga. Det är därför avgörande att planera och optimera vattenkraft på ett effektivt sätt. I detta projekt modelleras Skellefteälven med programvaran Spine. Fokus ligger på att tillämpa en styckvis linjär funktion för att beskriva elproduktionen istället för att använda en enklare linjär funktion. Modellen optimeras efter pris. Resultaten av optimeringen indikerar att den styckvis linjära funktionen ger korrekta värden på elproduktionen. Detta arbete har också bidragit till den fortsatta utvecklingen av Spine.

Place, publisher, year, edition, pages
2022. , p. 291-298
Series
TRITA-EECS-EX ; 2022:147
Keywords [en]
hydropower, Spine, optimization, modeling, piece-wise linear function
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-322743OAI: oai:DiVA.org:kth-322743DiVA, id: diva2:1723240
Supervisors
Examiners
Projects
Kandidatexjobb i elektroteknik 2022, KTH, StockholmAvailable from: 2023-01-02 Created: 2023-01-02 Last updated: 2023-02-10

Open Access in DiVA

fulltext(146281 kB)341 downloads
File information
File name FULLTEXT01.pdfFile size 146281 kBChecksum SHA-512
6ef8ac5f57bfa731be6b63752e35a8ad576eee3fa90434c6241186b62dff01f689b0a22454b6d600dd2dfa06cfe9b879bd9a8193673765e6a41ac9b51260faf0
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 341 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 729 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf