kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Point Cloud Data Augmentation for 4D Panoptic Segmentation
KTH, School of Electrical Engineering and Computer Science (EECS).
2022 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Punktmolndataförstärkning för 4D-panoptisk Segmentering (Swedish)
Abstract [en]

4D panoptic segmentation is an emerging topic in the field of autonomous driving, which jointly tackles 3D semantic segmentation, 3D instance segmentation, and 3D multi-object tracking based on point cloud data. However, the difficulty of collection limits the size of existing point cloud datasets. Therefore, data augmentation is employed to expand the amount of existing data for better generalization and prediction ability. In this thesis, we built a new point cloud dataset named VCE dataset from scratch. Besides, we adopted a neural network model for the 4D panoptic segmentation task and proposed a simple geometric method based on translation operation. Compared to the baseline model, better results were obtained after augmentation, with an increase of 2.15% in LSTQ.

Abstract [sv]

4D-panoptisk segmentering är ett framväxande ämne inom området autonom körning, som gemensamt tar itu med semantisk 3D-segmentering, 3D-instanssegmentering och 3D-spårning av flera objekt baserat på punktmolnsdata. Svårigheten att samla in begränsar dock storleken på befintliga punktmolnsdatauppsättningar. Därför används dataökning för att utöka mängden befintliga data för bättre generalisering och förutsägelseförmåga. I det här examensarbetet byggde vi en ny punktmolndatauppsättning med namnet VCE-datauppsättning från grunden. Dessutom antog vi en neural nätverksmodell för 4D-panoptisk segmenteringsuppgift och föreslog en enkel geometrisk metod baserad på översättningsoperation. Jämfört med baslinjemodellen erhölls bättre resultat efter förstärkning, med en ökning på 2.15% i LSTQ.

Place, publisher, year, edition, pages
2022. , p. 58
Series
TRITA-EECS-EX ; 2022:855
Keywords [en]
Point Cloud, Data Augmentation, 4D panoptic segmentation, Deep Learning, 3D Perception, Autonomous Driving
Keywords [sv]
Punktmoln, Dataökning, 4D panoptisk segmentering, Djup lärning, 3D Perception, 3D Uppfattning, Autonom körning
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-322956OAI: oai:DiVA.org:kth-322956DiVA, id: diva2:1725009
External cooperation
Volvo Construction Equipment
Supervisors
Examiners
Available from: 2023-01-27 Created: 2023-01-09 Last updated: 2023-01-27Bibliographically approved

Open Access in DiVA

fulltext(2138 kB)374 downloads
File information
File name FULLTEXT01.pdfFile size 2138 kBChecksum SHA-512
8639c7f2485ece46e00fc62e2d61c8bdd818973647c2b83bbb58cf33d680228cdd61118a134a621188af404dea9028e9bd41c148c2f8bd90aeee38c02dc3ffef
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 374 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 382 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf