kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Water Contamination Detection With Binary Classification Using Artificial Neural Networks
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2022 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Water contamination is a major source of diseasearound the world. Therefore, the reliable monitoring of harmfulcontamination in water distribution networks requires considerableeffort and attention. It is a vital necessity to possess a reliablemonitoring system in order to detect harmful contamination inwater distribution networks. To measure the potential contamination,a new sensor called an ’electric tongue’ was developedin Link¨opings University. It was created for the purpose ofmeasuring various features of the water reliably. This projecthas developed a supervised machine learning algorithm that usesan artificial neural network for the detection of anomalies in thesystem. The algorithm can detect anomalies with an accuracy ofaround 99.98% based on the data that was available. This wasachieved through a binary classifier, which reconstructs a vectorand compares it to the expected outcome. Despite the limitationsof the problem and the system’s capabilities, binary classificationis a potential solution to this problem.

Abstract [sv]

Vatten kontaminering är en huvudsaklig anledning till sjukdom runtom i världen. Därför är det en avgörande nödvändighet att ha ett tillförlitligt övervakningssystem för att upptäcka skadliga föroreningar i vattendistributionsnät. För att mäta den potentiella föroreningen skapades en ny sensor, den så kallade ”Electric Tongue” vid Linköpings universitet Den skapades i syfte att mäta olika egenskaper i vattnet på ett tillförlitligt sätt. Genom att använda ett artificiellt neuralt nätverk utvecklades en supervised machine learning algoritm för att upptäcka anomalier i systemet. Algoritmen kan upptäcka anomalier med 99.98% säkerhet som baseras på befintliga data. Detta uppnåddes genom att rekonstruera en vektor och jämföra det med det förväntade resultatet genom att använda en binär klassificerare. Trots att det finns begränsningar som orsakats både av problemet men också systemets förmågor, så är binär klassificering en potentiell lösning till detta problem.

Place, publisher, year, edition, pages
2022. , p. 465-476
Series
TRITA-EECS-EX ; 2020:163
Keywords [en]
Water distribution network, Machine Learning, Artificial Neural Network, Supervised Machine Learning, Binary Classification, Time Window
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-323707OAI: oai:DiVA.org:kth-323707DiVA, id: diva2:1735856
Supervisors
Examiners
Projects
Kandidatexjobb i elektroteknik 2022, KTH, StockholmAvailable from: 2023-02-10 Created: 2023-02-10

Open Access in DiVA

fulltext(146281 kB)426 downloads
File information
File name FULLTEXT01.pdfFile size 146281 kBChecksum SHA-512
6ef8ac5f57bfa731be6b63752e35a8ad576eee3fa90434c6241186b62dff01f689b0a22454b6d600dd2dfa06cfe9b879bd9a8193673765e6a41ac9b51260faf0
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 426 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 259 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf