kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Explaining Mortality Prediction With Logistic Regression
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2022 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Explainability is a key component in building trust for computer calculated predictions when they are applied to areas with influence over individual people. This bachelor thesis project report focuses on the explanation regarding the decision making process of the machine learning method Logistic Regression when predicting mortality. The aim is to present theoretical information about the predictive model as well as an explainable interpretation when applied on the clinical MIMIC-III database. The project found that there was a significant difference between particular features considering the impact of each individual feature on the classification. The feature that showed the greatest impact was the Glasgow Coma Scale value, which could be proven through the fact that a good classifier could be constructed with only that and one other feature. An important conclusion from this study is that a great focus should be enforced early in the implementation process when the features are selected. In this specific case, when medical artificial intelligence is implemented, medical expertise is desired in order to make a good feature selection.

Abstract [sv]

Förklarbarhet är en viktig komponent för att skapa förtroende för datorframtagna prognoser när de appliceras på områden som påverkar individuella personer. Denna kandidatexamensarbetesrapport fokuserar på förklarandet av beslutsprocessen hos maskininlärningsmetoden Logistic Regression när dödlighet ska förutsägas. Målet är att presentera information om den förutsägande modellen samt en förklarbar tolkning av resultaten när modellen appliceras på den kliniska databasen MIMIC-III. Projektet fann att det fanns signifikanta skillnader mellan särskilda egenskaper med hänsyn till den påverkan varje enskild egenskap har på klassificeringen. Den egenskapen som visade ha störst inverkan var Glascow Coma Scale värdet, vilket kunde visas via det faktum att en god klassificerare kunde konstrueras med endast den och en annan egenskap. En viktig slutsats av denna studie är att stort fokus bör läggas tidigt i implementationsprocessen då egenskaperna väljs. I detta specifika fall, då medicinsk artificiell intelligens implementeras, krävs medicinsk expertis för att göra ett gott egenskapsurval.

Place, publisher, year, edition, pages
2022. , p. 537-545
Series
TRITA-EECS-EX ; 2022:169
Keywords [en]
Machine Learning, Logistic Regression, Mortality Prediction, Explainability, MIMIC-III
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-323725OAI: oai:DiVA.org:kth-323725DiVA, id: diva2:1735999
Supervisors
Examiners
Projects
Kandidatexjobb i elektroteknik 2022, KTH, StockholmAvailable from: 2023-02-10 Created: 2023-02-10

Open Access in DiVA

fulltext(146281 kB)461 downloads
File information
File name FULLTEXT01.pdfFile size 146281 kBChecksum SHA-512
6ef8ac5f57bfa731be6b63752e35a8ad576eee3fa90434c6241186b62dff01f689b0a22454b6d600dd2dfa06cfe9b879bd9a8193673765e6a41ac9b51260faf0
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 461 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 275 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf