kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Monte-Carlo Tree Search for Fox Game
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2022 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

This report explores if Monte-Carlo Tree Search (MCTS) can perform well in Fox Game, a classic Scandinavian strategy game. MCTS is implemented using a cutoff in the simulation phase. The game state is then evaluated using a heuristic function that is formulated using theoretical arguments from its chess counterpart. MCTS is shown to perform on the same level as highly experienced human players using limited computational resources. The method is used to explore how the imbalance in Fox Game (favoring sheep) can be mended by reducing the number of sheep pieces from 20 to 18.

Abstract [sv]

I denna rapport undersöks om Monte-Carlo trädsökning (MCTS) kan prestera väl i rävspel, ett klassiskt skandinaviskt strategispel. MCTS implementeras med en cutoff i simuleringsfasen. Speltillståndet utvärderas där med hjälp av en heuristisk funktion som formuleras med hjälp av teoretiska argument från dess motsvarighet i schack. MCTS med endast begränsade beräkningsresurser visas kunna prestera på samma nivå som mycket erfarna människor. Metoden används för att utforska hur obalansen i rävspel (som gynnar får) kan förbättras genom att minska antalet fårpjäser från 20 till 18.

Place, publisher, year, edition, pages
2022. , p. 673-679
Series
TRITA-EECS-EX ; 2022:182
Keywords [en]
Monte-Carlo Tree Search, Artificial Intelligence, Fox Game, Cutoff, Heuristic Function
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-323739OAI: oai:DiVA.org:kth-323739DiVA, id: diva2:1736073
Supervisors
Examiners
Projects
Kandidatexjobb i elektroteknik 2022, KTH, StockholmAvailable from: 2023-02-10 Created: 2023-02-10

Open Access in DiVA

fulltext(146281 kB)276 downloads
File information
File name FULLTEXT01.pdfFile size 146281 kBChecksum SHA-512
6ef8ac5f57bfa731be6b63752e35a8ad576eee3fa90434c6241186b62dff01f689b0a22454b6d600dd2dfa06cfe9b879bd9a8193673765e6a41ac9b51260faf0
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 276 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 303 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf