kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Metrics for Multidimensional Persistence
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2022 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Metriker för multidimensionell persistens (Swedish)
Abstract [en]

A fundamental mathematical object in topological data analysis today is the persistence module. This thesis explores different metrics on multidimensional persistence modules, where spaces are parametrized along multiple dimensions. The focus is especially on metrics constructed by the use of so called noise systems, introduced by Scolamiero et al. in 2015. Furthermore, suggestions for new noise systems are given and bounds for their metrics are presented. An exact computation for the metric induced by the volume noise system is also shown for pairs of modules satisfying certain conditions.

Abstract [sv]

Ett fundamentalt matematiska objekt idag inom topologisk dataanalys är persistensmodulen. I det här examensarbetet utforskas olika metriker på multidimensionella persistensmoduler, där rum är parametriserade längs flera dimensioner. Fokus ligger särskilt på metriker konstruerade från så kallade noise system, som introducerades 2015 av Scolamiero et al. Förslag på nya noise system ges även och begränsningar för deras metriker kommer presenteras. För volume noise-systemet visas dessutom en exakt beräkning av metriken för par of moduler som uppfyller särskilda krav.

Place, publisher, year, edition, pages
2022. , p. 52
Series
TRITA-SCI-GRU ; 2022:325
Keywords [en]
topological data analysis, multidimensional persistence, persistence modules, metrics, noise systems
Keywords [sv]
topologisk dataanalys, multidimensionell persistens, persistensmoduler, metriker, noise system
National Category
Other Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-323873OAI: oai:DiVA.org:kth-323873DiVA, id: diva2:1737014
Subject / course
Mathematics
Educational program
Master of Science - Mathematics
Supervisors
Examiners
Available from: 2023-02-15 Created: 2023-02-15 Last updated: 2023-02-15Bibliographically approved

Open Access in DiVA

fulltext(507 kB)160 downloads
File information
File name FULLTEXT01.pdfFile size 507 kBChecksum SHA-512
b377d72717c2dbc22a98082a6211268ad738705c12482bc3a658aeac85f648af126b3590717e0430b2e901dba042f69a391dd8b85722e9e1e9400a559ca5c037
Type fulltextMimetype application/pdf

By organisation
Mathematics (Div.)
Other Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 160 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 410 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf