kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On fiber network fracture mechanics and kink band formation in biocomposites
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.ORCID iD: 0000-0003-2151-8741
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis summarizes seven appended papers dealing with: (1) The fracture of fibrous materials, e.g., paper and paperboard, toward understanding the upper limits of paper products and eventually optimizing packaging performance in its endeavor to replace plastics with recyclable packaging; (2) The compressive failure of flax fiber composites, a promising eco-friendly alternative to synthetic composite materials, toward understanding the low compressive-compared-to-tensile strength of biocomposites, a design-limiting feature, and ultimately engineer better performing natural fiber composites for sustainable structures. 

(1) In Paper I, we consider an elastoplastic Timoshenko beam finite element formulation with embedded strong discontinuities in the description of multi-fracturing fibers in fiber networks, a deficiency in previous studies. Seeing that the coupled (monolithic) problem is non-convex, materializing through poor robustness and undesirable material instabilities, we present an alternating minimization (staggered) algorithm for this class of problems and thus retain a positive definite stiffness matrix. In Paper II, we propose a hybrid of monolithic and staggered solution methods for robust and computationally efficient fracture simulations, with an up to 30-fold performance gain compared to the staggered approach in the benchmark exercises. The hybrid method represents a matrix regularization technique that retains a positive definite stiffness matrix while approaching the tangent stiffness matrix of the monolithic problem. In Paper III, we develop a geometrically nonlinear Simo-Reissner beam theory with embedded strong discontinuities based on the method of incompatible modes, capturing the activation of additional fibers during loading. We show that accounting for geometrical nonlinearity in the beam formulation is necessary for direct numerical simulations of fiber networks regardless of the density. 

(2) In Paper IV, we formulate a multi-scale homogenization framework for layered composite materials, where we model the instantaneous constitutive behavior of the matrix and the fiber separately utilizing a combined Voigt and Reuss approximation, followed by an upscaling to the composite. Advantages include the independence of fiber rotations because it is fully defined in the known initial configuration of the composite. In Paper V, we back-calculate the compressive stress-strain response of the flax fiber from the Impregnated Fiber Bundle Test (IFBT) in compression using the rule of mixtures, necessary input data in the micromechanical description of flax fiber composites. In Paper VI, we formulate hyperelastic models for deformation plasticity into the finite strain range. One application includes mimicking the stress-strain response of the fiber and the matrix in the homogenization of layered composite materials, which we numerically verify against a micromechanical model. In Paper VII, we extend the hyperelastic model to account for fiber damage. We show numerically and experimentally through X-ray Computed Tomography (XCT) and Scanning Electron Microscopy (SEM) that fiber damage plays the utmost role in the compressive failure of flax fiber composites – it is a major determinant of the material’s compressive stress-strain response. The micromechanisms include elementary fiber crushing and intra-technical fiber splitting.

Abstract [sv]

Avhandlingen sammanfattar sju bifogade artiklar om (1) fiberbrott i nätverksbaserade material som t.ex. papper och kartong, och (2) kompressionshållfastheten hos linfiberkompositer, vilket är ett lovande miljövänligt alternativ till syntetiska kompositmaterial.

(1) I Paper I betraktas en finit elementformulering av en elastiskt-plastisk Timoshenko balk med en inbäddad stark diskontinuitet för att beskriva multipla fiberbrott i fibernätverk. Detta har inte varit möjligt i tidigare studier. Eftersom det kopplade (monolitiska) problemet är icke-konvext, materialiserat genom dålig robusthet och oönskade materialinstabiliteter, presenteras en sekventiell minimeringsalgoritm för denna klass av problem som medför att styvhetsmatrisen förblir positivt definit. I Paper II föreslås en hybrid av monolitiska och sekventiella lösningsmetoder för robusta och beräkningseffektiva simuleringar av multipla fiberbrott i fibernätverk. Jämfört med det sekventiella tillvägagångssättet erhålles en upp till trettiofaldig prestandavinst för ett antal i testexempel. Hybridmetoden representerar en matrisregulariseringsteknik som bibehåller en positivt definit styvhetsmatris samtidigt som tangentstyvhetsmatrisen närmar sig det monolitiska problemet. I Paper III utvecklas en geometriskt olinjär Simo-Reissner balkteori med inbäddade starka diskontinuiteter baserad på metoden för icke kompatibla deformationsmoder, som fångar aktiveringen av ytterligare fibrer under belastningen. Dessutom visas att beaktande av geometriska olinjäriteter i formuleringen av balkteorin ger betydande bidrag till responsen vid direkta numeriska simuleringar av fibernätverk oavsett nätverkets densitet.

(2) I Paper IV formuleras ett flerskaligt ramverk för homogenisering av kompositlaminat. Det momentana konstitutiva beteendet hos matrisen och fibern modelleras separat med hjälp av en kombinerad Voigt och Reuss approximation. Kompositlaminatets egenskaper fås därefter genom en uppskalning. En fördel med detta tillvägagångssätt är att det är oberoende av fiberrotationer eftersom det är helt definierat i kompositens referenskonfiguration. Linfiberns spännings-töjningsrespons i kompression är nödvändig i den mikromekaniska beskrivningen av linfiberkompositer. I Paper V beräknas den med data från kompressionsprovning av impregnerade fiberbuntar, det s.k. Impregnated Fiber Bundle Test (IFBT), och blandningslagarna för kompositer. I Paper VI formuleras hyperelastiska modeller för deformationsplasticitet för stora töjningar. En applikation inkluderar att efterlikna fiberns och matrisens spännings-töjningsrespons vid homogenisering av skiktade kompositmaterial, vilket numeriskt verifieras med en mikromekanisk modell. I Paper VII utökas den hyperelastiska modellen för att ta hänsyn till fiberskador. Det visas både numeriskt och experimentellt, genom röntgendatortomografi (XCT) och svepelektronmikroskopi (SEM), att fiberskador har en avgörande betydelse för linfiberkompositers kompressionsstyrka. Typiska mikroskopiska fiberskador är krossning av elementärfibrer och splittring av tekniska fibrer.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2023.
Series
TRITA-SCI-FOU ; 2023:03
Keywords [en]
Staggered, Monolithic, Fracture, Constitutive modeling, Strong discontinuity approach (SDA), Simo-Reissner beam theory, Geometrically exact beam theory
Keywords [sv]
Minimeringsalgoritm, Simo-Reissner balkteori, Icke kompatibla deformationsmode, Konstitutiva model
National Category
Applied Mechanics Computer Sciences
Research subject
Solid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-323988ISBN: 978-91-8040-481-5 (print)OAI: oai:DiVA.org:kth-323988DiVA, id: diva2:1737742
Public defence
2023-03-17, https://kth-se.zoom.us/j/68993674093, Kollegiesalen, Brinellvägen 8, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
EU, Horizon 2020, FibreNet
Note

QC 230220

Available from: 2023-02-20 Created: 2023-02-17 Last updated: 2023-03-01Bibliographically approved
List of papers
1. Modeling multi-fracturing fibers in fiber networks using elastoplastic Timoshenko beam finite elements with embedded strong discontinuities - Formulation and staggered algorithm
Open this publication in new window or tab >>Modeling multi-fracturing fibers in fiber networks using elastoplastic Timoshenko beam finite elements with embedded strong discontinuities - Formulation and staggered algorithm
2021 (English)In: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 384, article id 113964Article in journal (Refereed) Published
Abstract [en]

To model fiber failures in random fiber networks, we have developed an elastoplastic Timoshenko beam finite element with embedded discontinuities. The method is based on the theory of strong discontinuities where the generalized displacement field is enhanced by a jump. The continuum mechanics formulation accounts for a fracture process zone and a bulk material while retaining traction continuity across the discontinuity. The additional degrees of freedom that are associated with the discontinuity are represented by a midpoint node, which is statically condensed to enable the implementation in commercial software through the user element interface. We propose a quasi-brittle fracture model, where the failure-related deformation is uncoupled from the plastic deformation in the bulk material. To retain the positive definite finite element stiffness matrix of the bulk material, we neglect the fracture-related softening of the discontinuity and employ a modified Newton iteration in the strain softening domain. Our implementation facilitates the integration into commercial finite element software and examples illustrate the robustness of the method. The FORTRAN source code is freely available to benchmark our model. We show that fiber failures contribute to the nonlinear stress-strain response of paper. Together with fiber-fiber bond failures, they can potentially explain the nonlinear stress-strain response of paper and nanopaper.

Place, publisher, year, edition, pages
Elsevier BV, 2021
Keywords
Fiber network, Multi-fracturing solids, Embedded Discontinuity Finite Element Method (ED-FEM), Enhanced finite elements, Beams, Strong discontinuity
National Category
Applied Mechanics
Identifiers
urn:nbn:se:kth:diva-299474 (URN)10.1016/j.cma.2021.113964 (DOI)000677395100012 ()2-s2.0-85107680135 (Scopus ID)
Note

QC 20210816

Available from: 2021-08-16 Created: 2021-08-16 Last updated: 2023-02-17Bibliographically approved
2. Hybrid of monolithic and staggered solution techniques for the computational analysis of fracture, assessed on fibrous network mechanics
Open this publication in new window or tab >>Hybrid of monolithic and staggered solution techniques for the computational analysis of fracture, assessed on fibrous network mechanics
2022 (English)In: Computational Mechanics, ISSN 0178-7675, E-ISSN 1432-0924, Vol. 71, no 1, p. 39-54Article in journal, Editorial material (Refereed) Published
Abstract [en]

The computational analysis of fiber network fracture is an emerging field with application to paper, rubber-like materials, hydrogels, soft biological tissue, and composites. Fiber networks are often described as probabilistic structures of interacting one-dimensional elements, such as truss-bars and beams. Failure may then be modeled as strong discontinuities in the displacement field that are directly embedded within the structural finite elements. As for other strain-softening materials, the tangent stiffness matrix can be non-positive definite, which diminishes the robustness of the solution of the coupled (monolithic) two-field problem. Its uncoupling, and thus the use of a staggered solution method where the field variables are solved alternatingly, avoids such difficulties and results in a stable, but sub-optimally converging solution method. In the present work, we evaluate the staggered against the monolithic solution approach and assess their computational performance in the analysis of fiber network failure. We then propose a hybrid solution technique that optimizes the performance and robustness of the computational analysis. It represents a matrix regularization technique that retains a positive definite element stiffness matrix while approaching the tangent stiffness matrix of the monolithic problem. Given the problems investigated in this work, the hybrid solution approach is up to 30 times faster than the staggered approach, where its superiority is most pronounced at large loading increments. The approach is general and may also accelerate the computational analysis of other failure problems.

Place, publisher, year, edition, pages
Springer Nature, 2022
Keywords
Monolithic, Staggered, Hybrid, Fracture
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-323984 (URN)10.1007/s00466-022-02197-4 (DOI)000826815300001 ()2-s2.0-85134538163 (Scopus ID)
Projects
FibreNet
Funder
KTH Royal Institute of TechnologyEU, Horizon 2020EU, Horizon 2020EU, Horizon 2020
Note

Correction in: Computational Mechanics, vol. 71, issue 2. DOI:10.1007/s00466-022-02239-x, Scopus-ID:2-s2.0-85141482941

QC 20230328

Available from: 2023-02-17 Created: 2023-02-17 Last updated: 2023-06-14Bibliographically approved
3. Compressive failure of fiber composites containing stress concentrations: Homogenization with fiber-matrix interfacial decohesion based on a total Lagrangian formulation
Open this publication in new window or tab >>Compressive failure of fiber composites containing stress concentrations: Homogenization with fiber-matrix interfacial decohesion based on a total Lagrangian formulation
2019 (English)In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 182, article id 107758Article in journal, Editorial material (Refereed) Published
Abstract [en]

Compression failure by fiber kinking limits the structural applications of fiber composites. Fiber kinking is especially prevalent in laminates with holes and cutouts. The latter behavior is characterized by strain localization in the matrix material and fiber rotations. To study fiber kinking on the level of the individual constituents, a homogenization of fiber composites is presented. It is based on a total Lagrangian formulation, making it independent of fiber rotations. It accounts for the microstructure of the composite, including fiber-matrix interfacial decohesion, and enables all types of material behavior of the constituents. The response of each constituent of the composite is modeled separately and the global response is obtained by an assembly of all contributions. The model is implemented as a user-defined material model (UMAT) in ABAQUS and used for multiscale modeling of notched unidirectional plies subjected to compression. The model performs well in agreement with a finite element model of an explicit discretization of the microstructure and literature results. The simulations predict the formation of a kink band in near 0-degree plies and show that the open-hole compression strength is sensitive to fiber-matrix interfacial decohesion. The present work suggests a convenient and computationally efficient tool for simulating the elastic-plastic behavior of fiber composites on the fiber-matrix level and predicting the compressive strength of laminates.

Place, publisher, year, edition, pages
Elsevier BV, 2019
Keywords
Polymer-matrix composites (PMCs), Constitutive model, Homogenization, Non-linear behavior, Fiber-matrix interface, Fiber kinking, Notch
National Category
Composite Science and Engineering
Identifiers
urn:nbn:se:kth:diva-284795 (URN)10.1016/j.compscitech.2019.107758 (DOI)000487564800029 ()2-s2.0-85070534424 (Scopus ID)
Note

QC 20210624

Available from: 2020-11-03 Created: 2020-11-03 Last updated: 2023-02-17Bibliographically approved
4. Back calculated compressive properties of flax fibers utilizing the Impregnated Fiber Bundle Test (IFBT)
Open this publication in new window or tab >>Back calculated compressive properties of flax fibers utilizing the Impregnated Fiber Bundle Test (IFBT)
2020 (English)In: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840, Vol. 135, no 105930, article id https://doi.org/10.1016/j.compositesa.2020.105930Article in journal, Editorial material (Refereed) Published
Abstract [en]

In this study, the back calculated compressive properties of flax fibers utilizing the Impregnated Fiber Bundle Test (IFBT) were investigated. The back calculated stress-strain response can be described by the Ramberg-Osgood model. The compressive modulus of the fiber is similar to its tensile modulus. The compressive strength of the fiber is approximately 45 % of its tensile strength. Considering the presence of local fiber kinking within the elementary fibers as well as global fiber kinking due to fiber misalignments and plastic shear deformation in the matrix material, this is a remarkably high value for the compressive strength. Our results indicate that local fiber kinking precedes global fiber kinking. We show that IFBT is a promising method for determining the compressive properties of flax fibers and provides necessary input data for finite element analysis of the compressive failure mechanisms in unidirectional flax fiber reinforced composites.

Place, publisher, year, edition, pages
Stockholm: Elsevier BV, 2020
Keywords
Biocomposite, Cellulose, Fibres, Natural fibers, Buckling, Fibre deformation, Mechanical properties, Plastic deformation, Mechanical testing, Compressive properties, Flax fibers
National Category
Composite Science and Engineering
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-284794 (URN)10.1016/j.compositesa.2020.105930 (DOI)000537831600004 ()2-s2.0-85084428195 (Scopus ID)
Note

QC 20220215

Available from: 2020-11-03 Created: 2020-11-03 Last updated: 2023-02-17Bibliographically approved
5. Hyperelastic models for deformation plasticity with power-law hardening
Open this publication in new window or tab >>Hyperelastic models for deformation plasticity with power-law hardening
2023 (English)Report (Other academic)
Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2023. p. 20
Series
TRITA-SCI-RAP ; 2023:001
Keywords
Hyperelastic, Power-law hardening, Deformation plasticity
National Category
Applied Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-323987 (URN)
Note

QC 20230328

Available from: 2023-02-17 Created: 2023-02-17 Last updated: 2024-02-28Bibliographically approved
6. Continuum damage micromechanics description of the compressive failure mechanisms in sustainable biocomposites and experimental validation
Open this publication in new window or tab >>Continuum damage micromechanics description of the compressive failure mechanisms in sustainable biocomposites and experimental validation
Show others...
2023 (English)In: Journal of the mechanics and physics of solids, ISSN 0022-5096, E-ISSN 1873-4782, Vol. 171, p. 105138-, article id 105138Article in journal (Refereed) Published
Abstract [en]

We investigate the compressive failure mechanisms in flax fiber composites, a promising eco-friendly alternative to synthetic composite materials, both numerically and experimentally, and explain their low compressive-compared-to-tensile strength, the compressive-to-tensile strength ratio being 0.28 -0.6. We present a novel thermodynamically consistent continuum damage micromechanics model capturing events on the fiber-matrix scale. It describes the microstructure of a unidirectional composite and includes the instantaneous constitutive behavior of matrix and fibers. We show that flax fibers behave as elastic-plastic-damaged solids in compression. Furthermore, we show that fiber damage plays an utmost role in the compressive failure of flax fiber composites - it is a major determinant of the material's compressive stress-strain response. Using X-ray Computed Tomography (XCT) and Scanning Electron Microscopy (SEM), we identify the fiber damage as intra-technical fiber splitting and elementary fiber crushing. Due to micro -structural similarities among natural fibers, the same micro-mechanisms are likely to appear in other bio-based fibers and their composites.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Micro-buckling, Compression, Constitutive behaviour, Natural fibres, Biocomposites
National Category
Composite Science and Engineering
Identifiers
urn:nbn:se:kth:diva-323035 (URN)10.1016/j.jmps.2022.105138 (DOI)000896750900002 ()2-s2.0-85142886988 (Scopus ID)
Note

QC 20230112

Available from: 2023-01-12 Created: 2023-01-12 Last updated: 2023-02-17Bibliographically approved

Open Access in DiVA

fulltext(87610 kB)913 downloads
File information
File name FULLTEXT01.pdfFile size 87610 kBChecksum SHA-512
e28b037e4aca4ec9e3fe25756c48f5cdaf39ab74cf1b1cc4cd8ba7cd936411e7c4973fd5a67eec8c2e7109cc98b25bb0804fb0bcb5eecead03514f304d92d301
Type fulltextMimetype application/pdf

Authority records

Tojaga, Vedad

Search in DiVA

By author/editor
Tojaga, Vedad
By organisation
Solid Mechanics
Applied MechanicsComputer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 913 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 3560 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf