Open this publication in new window or tab >>2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Cancer remains one of the leading causes of death worldwide, with approximately 40% of the population expected to receive a cancer diagnosis during their lifetime. Conventional treatments such as surgery, chemotherapy, and radiotherapy have been essential in improving patient outcomes. However, these approaches often lack specificity, partly due to the inherent heterogeneity of tumors both between and within patients. Precision medicine has emerged to address these challenges by developing therapies tailored to the specific molecular and genetic profiles of tumors. Targeted therapies, particularly monoclonal antibodies, have shown great promise in this field, yet these therapies face limitations such as toxicity, poor tissue penetration, and high production costs. This thesis focuses on the development of innovative prodrug strategies, including affibody-based prodrugs and antibody prodrugs with affibody masking domains, aimed at enhancing tissue selectivity and reducing systemic toxicity in cancer therapy. Additionally, substrate engineering for tumor-associated proteases is explored to optimize prodrug activation. Through five research papers, these strategies are investigated for their potential to improve next-generation cancer therapeutics.
In Paper I, a masking domain was identified for an epidermal growth factor receptor (EGFR)-targeting affibody using Staphylococcus carnosus display. This study screened an affibody library to isolate a domain capable of efficiently masking EGFR-binding activity. A proof-of-concept prodrug demonstrated that the masking domain could inhibit EGFR binding, with restored activity upon proteolytic cleavage. In Paper II, the initial affibody-based prodrug was further optimized to improve its biodistribution in vivo. Key modifications included the introduction of a suitable tumor protease substrate and a high-affinity albumin-binding domain to extend blood circulation time. The optimized prodrug exhibited favorable biodistribution in tumor xenografted mice, with strikingly reduced uptake in healthy tissues, demonstrating a significant improvement in tumor selectivity in vivo.
In Paper III, affibodies were explored as masking domains for the anti-EGFR monoclonal antibody cetuximab. Using Escherichia coli display, affibodies were selected to specifically bind and mask cetuximab's paratope. A cetuximab prodrug was engineered with an affibody masking domain, and in vitro studies revealed a 400-fold reduction in cetuximab’s growth inhibitory effects until proteolytic activation. This study validated the use of affibody masking domains in antibody-based prodrugs. Paper IV aimed to demonstrate the versatility of the E. coli display platform by isolating affibodies capable of masking nivolumab, an anti-PD-1 monoclonal antibody. The screening identified non-conventional affibody molecules that appear to mimic PD-1 and block nivolumab’s binding capacity. Structural modeling and bio-layer interferometry confirmed effective masking and restoration of PD-1 binding upon cleavage, suggesting potential for improved immune checkpoint inhibition with reduced systemic side effects.
With the aim of enhancing prodrug activation, in Paper V, a high-throughput E. coli display platform was engineered to identify optimized substrates for matriptase, a tumor-associated protease. A large substrate library was designed and screened for cleavage efficiency, leading to the discovery of several substrate candidates with enhanced cleavage kinetics. These optimized substrates were incorporated into prodrug designs, demonstrating significantly improved activation in vitro compared to previously reported reference substrates.
In conclusion, this thesis demonstrates the potential of affibody molecules as both masking and targeting domains in prodrugs, offering a promising strategy for improving the selectivity and efficacy of cancer therapeutics. These findings provide a strong foundation for future advancements in the design of precision cancer treatments.
Abstract [sv]
Cancer är fortfarande en av de ledande dödsorsakerna globalt, och ungefär 40 % av befolkningen förväntas få en cancerdiagnos under sin livstid. Konventionella behandlingar som kirurgi, kemoterapi och strålbehandling har historiskt varit avgörande för att förbättra behandlingsresultaten. Dessa behandlingsstrategier uppvisar dock ofta begränsad specificitet, delvis på grund av tumörers heterogenitet både mellan och inom patienter. Precisionsmedicin har utvecklats för att möta dessa utmaningar genom att ta fram terapier som är riktade mot tumörernas specifika molekylära och genetiska profiler. Målsökande terapier, särskilt monoklonala antikroppar, har visat stor potential inom detta område, men dessa behandlingar har också begränsningar såsom toxicitet, dålig vävnadspenetration och höga produktionskostnader. Denna avhandling fokuserar på utveckling av innovativa prodrug-strategier, inklusive affibody-baserade prodrugs och antikroppsprodrugs, med det övergripande målet att förbättra vävnadsspecificitet och minska systemisk toxicitet. Genom fem forskningsartiklar undersöks dessa olika strategier för deras potential att förbättra nästa generations cancerterapier.
I Paper I identifierades en maskeringsdomän för en affibody riktad mot epidermal growth factor receptor (EGFR) med hjälp av Staphylococcus carnosus display. Denna studie screenade ett affibodybibliotek för att isolera en domän som effektivt kan maskera bindningsaktiviteten i den målsökande domänen. En första prodrug-variant med maskeringsdomänen visade väsentligt blockerad EGFR-bindning, samt återställd aktivitet efter proteolytisk klyvning. I Paper II optimerades den affibody-baserad prodrug från paper I för att förbättra dess biodistribution in vivo. Viktiga modifieringar inkluderade införandet av ett proteasubstrat och en albuminbindande domän för att förlänga cirkulationstiden i blod. Den optimerade varianten visade en gynnsam biodistribution i tumör-bärande möss, med kraftigt reducerat upptag i frisk vävnad, och en betydande förbättring av tumörselektivitet in vivo.
Affibodies utvärderades i Paper III som maskeringsdomäner för den monoklonala antikroppen cetuximab. Från ett stort affibodybibliotek selekterades anti-idiotypa bindare för att specifikt maskera cetuximabs paratop. Med en av de nya maskeringsdomänerna konstruerades en prodrugversion av cetuximab, och in vitro-studier visade en 400-faldig minskning i effekt innan proteolytisk aktivering. Denna studie validerade användningen av affibodymolekyler som maskeringsdomäner i antikroppsbaserade prodrugs. I Paper IV demonstrerades mångsidigheten genom att isolera affibodymolekyler mot nivolumab, en anti-PD-1 monoklonal antikropp. Screeningen identifierade affibodies som verkar efterlikna PD-1 och därmed blockera nivolumab. Struktur-modellering och bindningstudier bekräftade effektiv maskering, samt återaktivering av PD-1-bindning efter klyvning.
Med målet att förbättra aktivering av prodrugs, modifierades i Paper V en metod baserad på E. coli display för att identifiera optimerade substratsekvenser för matriptas, ett tumörassocierat proteas. Ett stort substratbibliotek designades och screenades, vilket ledde till identifiering av flera substratkandidater med väsentligt förbättrad klyvning. Dessa optimerade substrat inkorporerades i prodrug-konstrukt, vilka senare visade en snabbare aktivering jämfört med tidigare rapporterade referenssubstrat.
Sammanfattningsvis visar denna avhandling potentialen hos affibodymolekyler som både maskerings- och målsökande domäner i biologiska prodrugs. Dessa resultat utgör en grund för framtida forskning inom design av nya precisionsmedicinska cancerbehandlingar med målet att ytterliggare förbättra selektivitet och effektivitet.
Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. p. 92
Series
TRITA-CBH-FOU ; 2024:38
Keywords
Targeted therapies, cancer, affibody molecules, monoclonal antibodies, prodrugs, conditional activation., Målsökande terapier, cancer, affibodymolekyler, monoklonala antikroppar, prodrugs, konditionell aktivering.
National Category
Biochemistry Molecular Biology
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-356263 (URN)978-91-8106-114-7 (ISBN)
Public defence
2024-12-06, F3, Lindstedtsvägen 26, KTH Campus, Stockholm, 09:00 (English)
Opponent
Supervisors
Note
QC 2024-11-14
2024-11-142024-11-132025-02-20Bibliographically approved