kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Uncertainty quantification for offshore wind turbines
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2022 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Osäkerhetskvantifiering för vindkraftverk till havs (Swedish)
Abstract [en]

Wind energy is a field with a large number of uncertainties. The random nature of the weather conditions, including wind speed, wind direction, and turbulence intensity, influences the energy output and the structural safety of a wind farm, making its performance fluctuate and difficult to predict. The uncertainties presented in the energy output and structure lifetime lead to increased investment risk. There are possibilities to reduce the risk associated with these uncertainties by optimizing the design of the farm or the wind turbine, with respect to the stochastic parameters. The goal of this project is to improve the wind farm optimization problem by providing accurate and computationally efficient annual energy production (AEP) estimates, which is a uncertainty quantification that is required in every optimization step.

Uncertainty quantification has been recognized as a challenge in the wind energy industry, as the chaotic nature of the weather condition complicates the prediction of energy production. High-fidelity wind farm models usually employ advanced models like Large Eddy Simulation or Reynolds averaged Navier-Stokes equation for better accuracy. However, the prolonged computation time of these high-fidelity models make the traditional uncertainty quantification approach like the Monte-Carlo simulation or other integration techniques infeasible for larger wind farms. 

To overcome this limitation, the report proposes the use of generalized polynomial chaos expansion (PCE) to characterize the AEP as a function of wind speed and wind direction. PCE is a technique that approximates a random variable using a series of orthogonal polynomials, the polynomials are chosen based on the target distribution. This report explains how a surrogate model of the AEP can be constructed using PCE, which can be used in optimization or model analysis.

The objective of the thesis work is to minimize the number of model evaluations required for obtaining an accurate energy response surface. Different ideas of non-intrusive PCE are implemented and explored in this project. The report demonstrates that, the multi-element polynomial chaos fitted by point collocation, with a dependent polynomial basis, is not only able to make accurate and stable (with respect to the placement of the measurements) energy predictions, but also produces realistic energy response surface.

Abstract [sv]

Vindkraft är en bransch med många osäkerheter, där väderförhållandena påverkar energiproduktionen och strukturens livslängd. Denna osäkerhet ökar investeringsrisken, men kan minskas genom optimering av vindkraftverkets design med hänsyn till de stokastiska parametrarna. Syftet med denna rapport är att förbättra optimeringsproblemet för vindkraftverk genom att ge noggranna och effektiva årliga energiproduktionsberäkningar (AEP), vilket krävs vid varje optimeringssteg. I rapporten används polynomial chaos expansion (PCE) för att approximera AEP och minska antalet nödvändiga modellutvärderingar. Resultaten visar att PCE är en effektiv metod för att göra energiprognoser.

Place, publisher, year, edition, pages
2022. , p. 51
Series
TRITA-SCI-GRU ; 2022:344
Keywords [en]
wind energy, uncertainty propagation, polynomial chaos, Rosenblatt transformation, quadrature, regression
Keywords [sv]
vindenergi, osäkerhetsutbredning, polynomkaos, Rosenblatt transformation, kvadratur, regression
National Category
Computational Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-325863OAI: oai:DiVA.org:kth-325863DiVA, id: diva2:1751411
External cooperation
NORCE
Subject / course
Scientific Computing
Educational program
Master of Science - Applied and Computational Mathematics
Supervisors
Examiners
Available from: 2023-04-18 Created: 2023-04-18 Last updated: 2023-04-18Bibliographically approved

Open Access in DiVA

fulltext(3187 kB)477 downloads
File information
File name FULLTEXT01.pdfFile size 3187 kBChecksum SHA-512
3cce0a3e3eb5cd40c50d6303ca7171569adf51298e99c512e744077ab1c62c8da18abe2be535160e1b5cd66ef89e243f309b8ad8576604e12c94980a41592bd0
Type fulltextMimetype application/pdf

By organisation
Mathematics (Div.)
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 478 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 340 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf