kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bayesian Structural Time Series in Marketing Mix Modelling
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2022 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Bayesianska Strukturella Tidsseriemodeller inom Marketing Mix Modellering (Swedish)
Abstract [en]

Marketing Mix Modelling has been used since the 1950s, leveraging statistical inference to attribute media investments to sales. Typically, regression models have been used to model the relationship between the two. However, the media landscape evolves at an increasingly rapid pace, driving the need for more refined models which are able to accurately capture these changes. One class of such models are Bayesian structural time series, which are the focal point in this thesis. This class of models retains the relationship between media investments and sales, while also allowing for model parameters to vary over time. The effectiveness of these models is evaluated with respect to prediction accuracy and certainty, both in and out-of-sample. A total of four different models of varying degrees of complexity were investigated. It was concluded that the in-sample performance was similar across models, yet when it came to out-of-sample performance models with time-varying performance outperformed their static counterparts, with respect to uncertainty. Furthermore, the functional form of the intercept influenced the uncertainty of the forecasts on extended time horizons.

Abstract [sv]

Marketing mix modellering har använts sedan 1950-talet för att dra slutsatser om hur mediainvesteringar påverkar försäljning, med hjälp av statistisk inferens. Vanligtvis har regressionmodeller använts för att modellera relationen mellan de två. Men medielandskapet utvecklas allt snabbare, vilket kräver mer sofistikerade modeller som kan fånga upp dessa förändringar på ett mer precist sätt. En klass av sådana modeller är Bayesianska strukturella tidsseriemodeller, som är fokus för detta arbete. Denna klass av modeller bibehåller den strukturella relationen mellan mediainvesteringar och försäljning, samtidigt som de också tillåter modellparametrarna att variera över tid. Effektiviteten hos modellerna bedöms med avseende på noggrannhet och säkerhet, både tränings- och testdata. Totalt fyra olika modeller med varierande komplexitet undersöktes. Det konstaterades att prestandan på träningsdata var likvärdig mellan modellerna, men när det gällde testdata presterade modeller med tidsvarierande parametrar bättre än sina statiska motsvarigheter, med avseende på osäkerhet. Dessutom påverkade den funktionella formen av interceptet osäkerheten hos prognoserna över längre tidshorisonter.

Place, publisher, year, edition, pages
2022. , p. 48
Series
TRITA-SCI-GRU ; 2022:336
Keywords [en]
Marketing mix modelling, Bayesian structural time series, variational inference, local linear trend, semi-local linear trend
Keywords [sv]
Marketing mix modellering, Bayesianska strukturella tidsseriemodeller, variationell inferens, lokal-linjär trend, semi-lokal linjär trend
National Category
Other Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-325969OAI: oai:DiVA.org:kth-325969DiVA, id: diva2:1752040
External cooperation
Nepa
Subject / course
Mathematical Statistics
Educational program
Master of Science - Applied and Computational Mathematics
Supervisors
Examiners
Available from: 2023-04-20 Created: 2023-04-20 Last updated: 2023-04-20Bibliographically approved

Open Access in DiVA

fulltext(3517 kB)2146 downloads
File information
File name FULLTEXT01.pdfFile size 3517 kBChecksum SHA-512
a19d5b3e411257a253e86e217aae7401737f37d4d7516ec8aa650187cfa99efeb99f74c071f0480651b05e95ba1f198aa879ec3f53cfa1f05d162f9feca6c73c
Type fulltextMimetype application/pdf

By organisation
Mathematics (Div.)
Other Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 2146 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1104 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf