kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Gasification of biochars: Evolution of pore structure, effects of alkalis and alkali release
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Process Technology.ORCID iD: 0000-0003-3668-6422
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Renewable energy sources are indispensable to meet the rising demand of energy usage  while  reducing  the  negative  environmental  impact  of utilising fossil  fuels. Gasification  is  an  efficient  technology  to  convert  biogenic waste  into  valuable gaseous products. The rate of conversion of char, produced in an intermediate step in the conversion, plays an essential role in the conversion of biogenic materials. The conversion of char is significantly affected by properties such as the structure of  the  char  and  its  alkali content.  This  thesis  presents  findings  related  to  the influence  of  char pore  structure  development  and  alkalis  content  on  char gasification, as well as the alkali release during gasification and co-gasification. 

Experimental  results  show  that  the  generation  of  micropores  are  directly proportional to the observed reactivity up to 70% of char conversion, after which the catalytic  effects  of  potassium  become  the  dominating  factor.  Furthermore, investigations of the effect of different intrinsic potassium contents on woody char reactivity demonstrate that no alkali surface saturation point is reached, as is the case for high-ash chars. Application of a modified random pore model enabled a successful  capture  of  the  later  stages  of  char  conversion  in  comparison  to  other kinetic models applied.  

Alkali release and sample mass changes were monitored simultaneously, using a thermogravimetric analyser together with a surface ionization detector (TGA-SID). The  studies  revealed  a  significant  release  of  alkali  as  woody  char conversion approaches completion during CO2  gasification. For straw char the release of alkali decreased  continuously  throughout  the  conversion  process. Similar  results  were obtained  for  biochar  gasification  under  steam conditions  in  a  fixed  bed  reactor. However,  in  this  case  the  process  is more  complex,  including  transfer  of  alkali between particles inside the fixed bed, which influences char conversion.  

Co-gasification of different types of biomass can substantially affect char conversion efficiency. In comparison to pure wood, mixing wood and straw had positive effects on  the  char  conversion  for  rates  below  90%  of  conversion,  while  exceeding  this degree of conversion resulted in negative effects. The most significant positive effect was observed at a gasification temperature of 900 °C, particularly when using a wood-straw blend of 75 wt%:25 wt%.   

The above findings are important for the understanding of the mechanisms of char conversion and are valuable in the design of gasifiers. The research provides with a deeper understanding of char structure development, alkali release, and migration during gasification of biogenic materials.   

Abstract [sv]

Förnybara  energikällor  behövs  för  att  möta  den  ökande  efterfrågan  på energianvändning,  samtidigt  med  behoven  av  att  minska  den  negativa miljöpåverkan  som  användningen  av  fossila  bränslen  medför.  Förgasning  är  en effektiv  teknologi  för  att  omvandla  biogent  avfall  till  värdefulla  gasformiga produkter.  I omvandlingsprocessen förkolas biomassan till biokol i ett intermediärt steg.  Hastigheten  för  omvandlingen  av  biokolet  spelar  en  avgörande  roll  vid förgasningen  av  biogena  material.  Denna  omvandling  påverkas  väsentligt  av biokolets egenskaper såsom kolstruktur och dess alkaliinnehåll. I denna avhandling presenteras  resultat  som  relaterar  till  inverkan  av  kolstrukturens  utveckling  och innehåll  av  alkalier  vid  förgasningen  av  biokol  samt  frigörandet  av  alkali  under förgasning och samförgasning. 

Experimentella  resultat  visar  på  att  genereringen  av  mikroporer  är  direkt proportionellt  mot  observerad  reaktivitet  upp  till  70  procents  kolomvandling. Därefter  är  de  katalytiska  effekterna  huvudsakligen  relaterade  till  kaliumhalten. Vidare  så  observerades  ingen  effekt  av  alkalimättnad  av  kolytan  på  biokolets reaktivitet vid studier med biokol från trämaterial med olika halter av kalium, något som observerats tidigare för biokol med högre innehåll av aska. Tillämpning av en modifierad randomiserad modell för utvecklingen av porer resulterade i en lämplig beskrivning av de slutliga stadierna i omvandlingen av biokol jämfört med andra kinetiska modeller. 

Frigörandet av alkalier och förändringar i provernas massa undersöktes med hjälp av termogravimetrisk analys tillsammans med en ytjonisationsdetektor (TGA-SID). Studierna  visar  att  en  betydande  mängd  alkalier  frigörs  mot  slutet  av  biokolets omvandling under koldioxidförgasning. För biokol från halm observerades däremot ett  fortsatt  minskat  frigörande  av  alkalier  under  hela  omvandlingsprocessen. Liknande resultat erhölls för biokolförgasning under ångförhållanden i en reaktor med en fast bädd. I detta fall är dock processen mer komplex och omfattar även överföring  av  alkalier  mellan  partiklar  inne  i  den  fasta  bädden,  vilket  påverkar kolomvandlingen.  

Samförgasning av olika typer av biomassa kan avsevärt påverka kolomvandlingens verkningsgrad. I jämförelse med rent trä så resulterade en blandning av trä och halm i positiva effekter på kolomvandlingen för omvandlingsgrader under 90 %, medan  högre  omvandlingsgrader  resulterade  i  negativa  effekter.  Den  mest betydelsefulla  positiva  effekten  observerades  vid  en  förgasningstemperatur  på 900°C, särskilt vid en trä-halm-blandning med viktprocentförhållandet 75:25 

Resultaten är viktiga för förståelsen av mekanismerna för omvandlingen av kol och är  värdefull  vid  konstruktion  av  förgasare.  Forskningen  har  gett  en  djupare förståelse för utvecklingen av kolstrukturen, frigörande av alkalier och migration under förgasning av biogent material.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2023. , p. 81
Series
TRITA-CBH-FOU ; 2023:11
Keywords [en]
gasification, alkali release, kinetic modelling, char reactivity, pore structure, alkalis effects
Keywords [sv]
förgasning, frigörande av alkalier, kinetisk modellering, kolreaktivitet, porstruktur, alkalieffekter
National Category
Chemical Engineering
Research subject
Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-326163ISBN: 978-91-8040-545-4 (print)OAI: oai:DiVA.org:kth-326163DiVA, id: diva2:1753046
Public defence
2023-05-26, Kollegiesalen, Brinellvägen 8, via Zoom: https://kth-se.zoom.us/meeting/register/u5Uld-yuqj0uE9HxDm0GdUZIEaz4jY8C5e9c, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2023-04-26

Available from: 2023-04-26 Created: 2023-04-25 Last updated: 2025-04-24Bibliographically approved
List of papers
1. Effects of Porous Structure Development and Ash on the Steam Gasification Reactivity of Biochar Residues from a Commercial Gasifier at Different Temperatures
Open this publication in new window or tab >>Effects of Porous Structure Development and Ash on the Steam Gasification Reactivity of Biochar Residues from a Commercial Gasifier at Different Temperatures
2020 (English)In: Energies, E-ISSN 1996-1073, Vol. 13, no 18, article id 5004Article in journal (Refereed) Published
Abstract [en]

The present study aims at investigating the effects of porous structure development and ash content on the observed reactivity during steam gasification of biochar residues from a commercial gasifier. The experiments were conducted at a temperature range of 700 to 800 °C using biochar, derived from entrained flow gasification of biomass, under isothermal conditions using a thermogravimetric analyzer. The pore size distribution, surface area and morphology of char samples were determined by N2 physiosorption and scanning electron microscopy (SEM). The results showed that the gasification temperature does not affect the porous structure development considerably. The total surface area of char exhibits a threefold increase, while the total pore volume increase ranges between 2.0 and 5.3 times, at all temperatures. Both properties are directly proportional to the observed reactivity, especially at conversions up to 70%. Catalytic effects of the mineral matter of the char (mainly potassium) become predominant at the later stages of conversion (conversion greater than 70%).

Place, publisher, year, edition, pages
MDPI AG, 2020
National Category
Chemical Engineering Energy Engineering
Identifiers
urn:nbn:se:kth:diva-284087 (URN)10.3390/en13195004 (DOI)000586685400001 ()2-s2.0-85092470168 (Scopus ID)
Note

QC 20201019

Available from: 2020-10-14 Created: 2020-10-14 Last updated: 2025-04-24Bibliographically approved
2. Potassium-induced phenomena and their effects on the intrinsic reactivity of biomass-derived char during steam gasification.
Open this publication in new window or tab >>Potassium-induced phenomena and their effects on the intrinsic reactivity of biomass-derived char during steam gasification.
(English)Manuscript (preprint) (Other academic)
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-326165 (URN)
Note

QC 20230426

Available from: 2023-04-25 Created: 2023-04-25 Last updated: 2023-11-03Bibliographically approved
3. Real-time monitoring of alkali release during CO2 gasification of different types of biochar
Open this publication in new window or tab >>Real-time monitoring of alkali release during CO2 gasification of different types of biochar
Show others...
2022 (English)In: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 327, article id 125102Article in journal (Refereed) Published
Abstract [en]

Potassium and sodium compounds play both positive and negative roles during biomass gasification, but the detailed behavior of alkali metal compounds remain incompletely understood. In this study, alkali release during CO2 gasification of biochar is characterized online with a surface ionization method in combination with thermogravimetric analysis of the char samples undergoing gasification. For wood chars, the alkali release rate follows a slowly decreasing trend as the char conversion proceeds, but increases by up to two orders of magnitude when the conversion approaches completion. In contrast, the alkali release from straw char is 40-50 times higher than observed for wood char and decreases continuously during the whole gasification process. A high temperature and a high CO2 concentration enhance both alkali release and char reactivity. The char preparation method also influences the alkali release from pine char, while the char reactivity is less affected. Alkali release and char reactivity are linked, but other factors including mineral content, surface area and char structure may play important roles for the observed reactivity. The results provide a basis for understanding of alkali behavior during gasification and may help optimize catalytic effects and reduce detrimental issues in biomass gasification.

Place, publisher, year, edition, pages
Elsevier BV, 2022
Keywords
Wood char, Straw char, CO2 gasification, Reactivity, Potassium, Surface ionization detector
National Category
Energy Engineering
Identifiers
urn:nbn:se:kth:diva-319090 (URN)10.1016/j.fuel.2022.125102 (DOI)000852941300003 ()2-s2.0-85133203155 (Scopus ID)
Note

QC 20220926

Available from: 2022-09-26 Created: 2022-09-26 Last updated: 2025-04-24Bibliographically approved
4. Alkali release behavior during steam gasification of char in a fixed bed reactor and its effect on reactivity.
Open this publication in new window or tab >>Alkali release behavior during steam gasification of char in a fixed bed reactor and its effect on reactivity.
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-326166 (URN)
Note

QCR 20230426

Available from: 2023-04-25 Created: 2023-04-25 Last updated: 2023-04-26Bibliographically approved
5. Online monitoring of alkali release during co-pyrolysis/gasification of forest and agricultural waste: Element migration and synergistic effects
Open this publication in new window or tab >>Online monitoring of alkali release during co-pyrolysis/gasification of forest and agricultural waste: Element migration and synergistic effects
Show others...
2023 (English)In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 172, p. 106745-106745, article id 106745Article in journal (Refereed) Published
Abstract [en]

Fuel blends may be used to meet several operational needs in thermal conversion of biomass waste, including optimization of ash properties and fuel conversion efficiency. In this study, online alkali measurements using surface ionization are employed to study synergistic effects produced by inorganic elements during co-pyrolysis/gasification of wood and straw waste. Synergistic effects on the fuel conversion behavior are not observed during co-pyrolysis, while alkali migration from straw to wood is clearly observed above 600 °C by online alkali monitoring. In contrast, synergistic effects on char conversion and alkali release are substantial during co-gasification. Positive effects on char reactivity during most of the gasification process are attributed to alkali migration from the straw to the wood char, and the most pronounced effect occurs at a gasification temperature of 900 °C and a straw content of 25%. Negative effects on char reactivity are observed at the final gasification stage, which is associated with a significantly reduced alkali release from fuel blends compared to pure wood char. The effect is attributed to the migration of silicon, phosphorus, and aluminum to the wood char, as revealed by scanning electron microscopy with energy dispersive spectroscopy, where the elements react with alkali to form catalytically inactive compounds. The mixing of biofuels is concluded to result in substantial effects on the fuel conversion efficiency, which should be taken into consideration in thermochemical conversion of biomass.

Place, publisher, year, edition, pages
Elsevier BV, 2023
Keywords
Co-pyrolysis, Co-gasification, Wood, Straw, Alkali, Synergistic effects
National Category
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-325670 (URN)10.1016/j.biombioe.2023.106745 (DOI)000951374300001 ()2-s2.0-85149481547 (Scopus ID)
Note

QC 20230412

Available from: 2023-04-11 Created: 2023-04-11 Last updated: 2023-04-25Bibliographically approved

Open Access in DiVA

fulltext(5594 kB)534 downloads
File information
File name FULLTEXT01.pdfFile size 5594 kBChecksum SHA-512
4235ea61a5c1842a1cb010ead64393e0dbfb4b687a87f66ceb35a9152bfbd4c9a1fddc3eb81d45cbc448210381216efb982675b565963962a69f692ff18bb348
Type fulltextMimetype application/pdf

Authority records

Ding, Saiman

Search in DiVA

By author/editor
Ding, Saiman
By organisation
Process Technology
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 535 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1442 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf