kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Computationally Efficient and Adaptive Energy Management Strategies for Parallel Hybrid Electric Vehicles
KTH, School of Industrial Engineering and Management (ITM), Engineering Design, Mechatronics and Embedded Control Systems.ORCID iD: 0000-0001-9556-6856
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Hybrid electric vehicles (HEVs) are irreplaceable in attaining sustainable development in contemporary society. Owing to the extra degree of freedom in supplying traction power, HEVs resort to appropriate energy management strategies (EMSs) to present their superiority over conventional internal combustion engine vehicles and pure electric vehicles.

Existing EMSs suffer from heavy computation overheads and excessive mode switches. This thesis proposes several novel methods for developing online EMSs for parallel HEVs that achieve both compelling fuel economy and excellent computation efficiency and adaptivity in online applications with uncertain driving conditions.

First, the solutions of offline dynamic programming (DP) are exploited to develop online EMSs for close-to-optimal control performances. The optimal speed profile serves as the reference in online control and the optimal value function (VF) is utilized to design control methods. To avoid the “curse of dimensionality”, the tabular VF is approximated by piecewise polynomials to substantially decrease the computation and memory overheads in online usage.

Second, to reduce the search space for optimal control actions, two types of special internal combustion engine (ICE) configurations are adopted and analyzed. The first type forces the ICE to strictly operate at the optimal operation line (OOL), whereas the second one allows a narrow band around the OOL. The second one outperforms the first one because it contributes to more robust ICE operations with slightly higher computation complexity.

Third, a hierarchical architecture is proposed for online EMSs so that the transient powertrain mode and torque split scheme are optimized by different methods in sequence. To avoid the exponential complexity of finding the optimal trajectory of the powertrain mode, the optimal VF is leveraged for an optimal decision within one sampling period with the aid of simplified assumptions. Model approximations on the ICE and the electric motor are conducted so as to convert the complex torque split problem into a constrained quadratic programming problem. These methods dramatically facilitate the computation efficiency of online EMSs.

Fourth, learning-based adaptive control is introduced to mitigate the adverse effect caused by the deviations between the model and the reality. For this target, efficient learning algorithms are designed to iteratively update the coefficient matrix of the approximated VF. Moreover, to avoid the pitfall of the “cold start” and prompt a fast convergence, the coefficient matrix is initialized by the optimal VF from offline DP.

Finally, an event-triggered control mechanism is applied to the torque split control and presents its remarkable advantage in eliminating the excessive computation overheads. At each time step, an efficient trigger algorithm decides if the reference ICE torque is still valid or outdated. If it is valid, the EMS directly uses the reference value as the optimal output; otherwise, the optimization algorithm for torque split control is executed to solve a new value and update the reference.

The performances of designed EMSs are tested by processor-in-the-loop simulations so that both the numeric results and the computation efficiency can be obtained for quantitative analysis and comparison. The testing results indicate that the designed EMSs can rapidly adapt to real driving conditions and generate more than 90% fuel economy of the DP optimum, and more importantly, all these EMSs can be implemented on a portable microprocessor with limited onboard computation resources.

Abstract [sv]

Elhybridfordon (HEV) är oersättliga för att uppnå en hållbar utveckling i dagens samhälle. Medelst den extra frihetsgraden för att tillhandahålla dragkraft, använder HEV:erna sig av s.k. energihanteringstrategier (EMS) för att kombinera fördelarna med konventionella förbränningsmotorfordon och rena elfordon.

Befintliga EMS lider av tunga beräkningskostnader och överdrivna lägesomkopplare. Denna avhandling flera nya metoder för att utveckla online-EMS för parallella HEV som uppnår både övertygande bränsleekonomi och utmärkt beräkningseffektivitet, samt god anpassningsförmåga i online tillämpningar med osäkra körförhållanden.

För det första utnyttjas lösningarna från offline dynamisk programmering (DP) för att utveckla online EMS med nära optimal reglerprestanda. Den optimala hastighetsprofilen tjänar som referens vid online-reglering och den optimala värdefunktionen (VF) används för att utforma reglermetoder. För att undvika de problem som uppstår vid storskaliga beräkningar approximeras VF som en uppsättning polynom, vilket sänker bl.a. minneskostnader vid onlineanvändning.

För det andra analyseras två typer av speciella förbränningsmotorkonfigurationer (ICE) vilket minskar sökutrymmet för optimala regleråtgärder. Den första typen tvingar ICE att arbeta strikt vid den optimala driftlinjen (OOL), medan den andra typen tillåter ett smalt band runt den. Den andra typen är bättre än den första eftersom den bidrar till mer robust ICE-drift, men med något högre beräkningskomplexitet.

För det tredje föreslås en hierarkisk arkitektur för online-EMS så att det transienta drivlinjeläget och vridmomentfördelningen optimeras med olika metoder i sekvens. För att undvika den exponentiella komplexiteten i att hitta den optimala banan för drivlinjeläget utnyttjas en VF grundad på förenklade antaganden, vilket leder till ett optimalt beslut inom en samplingsperiod. Modellförenklingar av både ICE och elmotorn genomförs för att omvandla det komplexa problemet med vridmomentfördelning till ett begränsat kvadratiskt programmeringsproblem. Dessa metoder underlättar dramatiskt beräkningseffektiviteten för elektroniska EMS.

För det fjärde introduceras inlärningsbaserad adaptiv styrning för att mildra de negativa effekter som orsakas av avvikelserna mellan modell och verklighet. För detta mål utformas effektiva inlärningsalgoritmer för att iterativt uppdatera den approximerade VF. För att undvika en s.k. "kallstart" och för att få en snabb konvergens initialiseras VF med lösningen från offline-DP.

Slutligen tillämpas en händelseutlöst reglering av vridmomentfördelning, vilket påvisar anmärkningsvärda fördelar genom att eliminera överdrivna beräkningskostnader. Vid varje tidssteg avgör en effektiv utlösningsalgoritm om referensmomentet för ICE fortfarande är giltigt eller föråldrat. Om det är giltigt används det som referensvärde; i annat fall beräknar optimeringsalgoritmen för vridmomentfördelning ett nytt värde vilket uppdaterar referensen.

De utformade EMS:ernas prestanda testas med hjälp av simuleringar med beräkningar på dedikerad hårdvara (s.k. "Processor-in-the-loop"), så att både de numeriska resultaten och beräkningseffektiviteten kan erhållas för kvantitativ analys och jämförelse. Testresultaten visar att de utformade EMS:erna snabbt kan anpassa sig till verkliga körförhållanden och kan bidra till mer än $90\%$ bränslesparande jämfört med DP, och ännu viktigare är att alla dessa EMS:er kan implementeras på en bärbar mikroprocessor med begränsade beräkningsresurser.

Place, publisher, year, edition, pages
Stockholm: Kungliga tekniska högskolan, 2023. , p. 93
Series
TRITA-ITM-AVL ; 2023:16
Keywords [en]
Hybrid Electric Vehicle, Energy Management Strategy, Computation Efficiency, Value Function, Adaptive Learning, Processor-in-the- Loop Simulation
Keywords [sv]
Elhybridfordon, Energihanteringsstrategi, Beräkningseffektivitet, Värdefunktion, Adaptiv Inlärning, Processor-in-the-loop
National Category
Control Engineering Vehicle and Aerospace Engineering Energy Engineering
Research subject
Machine Design; Applied and Computational Mathematics, Optimization and Systems Theory; Industrial Information and Control Systems
Identifiers
URN: urn:nbn:se:kth:diva-326340ISBN: 978-91-8040-548-5 (print)OAI: oai:DiVA.org:kth-326340DiVA, id: diva2:1753643
Public defence
2023-05-31, Gladan / https://kth-se.zoom.us/j/68364433509, Brinellvägen 85, Stockholm, 13:30 (English)
Opponent
Supervisors
Available from: 2023-05-04 Created: 2023-04-28 Last updated: 2025-02-14Bibliographically approved
List of papers
1. Increasing Fuel Efficiency of a Hybrid Electric Competition Car by a Binary Equivalent Consumption Minimization Strategy
Open this publication in new window or tab >>Increasing Fuel Efficiency of a Hybrid Electric Competition Car by a Binary Equivalent Consumption Minimization Strategy
2018 (English)In: 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), IEEE, 2018Conference paper, Published paper (Refereed)
Abstract [en]

To improve the fuel efficiency of a hybrid electric car with special powertrain features racing in Shell Eco-marathon, a computationally efficient online control system is developed by solving hierarchical optimal control problems. The top-level computes the optimal velocity trajectory based on the given competition track in advance. The lower-level then finds the best instantaneous engine state and torque allocation by the equivalent consumption minimization strategy (ECMS). The special design of the competition car reduces the ECMS into a binary optimization problem. The new controller can run in real-time on low-cost microprocessors and improves the car's fuel efficiency by 50% while maintaining the state of charge of the electrical energy buffer.

Place, publisher, year, edition, pages
IEEE, 2018
National Category
Vehicle and Aerospace Engineering
Research subject
Machine Design
Identifiers
urn:nbn:se:kth:diva-240618 (URN)10.1109/COASE.2018.8560378 (DOI)000460536600001 ()2-s2.0-85059975846 (Scopus ID)978-1-5386-3593-3 (ISBN)
Conference
2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)
Funder
XPRES - Initiative for excellence in production research
Note

QC 20220126

Available from: 2018-12-20 Created: 2018-12-20 Last updated: 2025-02-14Bibliographically approved
2. A Binary Controller to Ensure Engine Peak Efficiency for a Parallel Hybrid Electric Car
Open this publication in new window or tab >>A Binary Controller to Ensure Engine Peak Efficiency for a Parallel Hybrid Electric Car
2019 (English)In: Proceedings 2019 IEEE Intelligent Transportation Systems Conference, IEEE, 2019, p. 726-732Conference paper, Published paper (Refereed)
Abstract [en]

The fuel efficiency of the hybrid electric vehicle (HEV) highly relies on the engine efficiency. Thispaper proposes a particular powertrain configuration on a small hybrid electric racing car wherethe engine is only allowed to operate withpeak efficiency. An onlinebinarycontroller, accordingly, is developedbased on dynamic programming (DP)to control the engine on/off status and the torques from the electric motors (EMs) to ensure the HEV can successfully complete the drive mission with minimal fuel consumption.For comparison, the paper also develops anoptimal powertrain controller of the same HEV with the normal usage ofthe engine, i.e., the engine operates at any feasible point of the 2Dfuel efficiency map. The simulation results show that this binary controller can improveroughly13% on fuel efficiency compared with the general engine case.

Place, publisher, year, edition, pages
IEEE, 2019
Keywords
Hybrid electric vehicle, energy management control, engine peak efficiency, dynamic programming
National Category
Control Engineering
Research subject
Applied and Computational Mathematics, Optimization and Systems Theory; Vehicle and Maritime Engineering
Identifiers
urn:nbn:se:kth:diva-268543 (URN)10.1109/ITSC.2019.8917315 (DOI)000521238100116 ()2-s2.0-85076814115 (Scopus ID)
Conference
2019 IEEE Intelligent Transportation Systems Conference - ITSC2019, Auckland, New Zealand 27-30 October
Projects
Optimal Integration of Combustion Engines and Electric Motors for HEVs
Funder
XPRES - Initiative for excellence in production research
Note

QC 20200220

Part of ISBN 9781538670248

Available from: 2020-02-19 Created: 2020-02-19 Last updated: 2024-10-15Bibliographically approved
3. Fuel Minimization of a Hybrid Electric Racing Carby Quasi-Pontryagin’s Minimum Principle
Open this publication in new window or tab >>Fuel Minimization of a Hybrid Electric Racing Carby Quasi-Pontryagin’s Minimum Principle
2021 (English)In: IEEE Transactions on Vehicular Technology, ISSN 0018-9545, E-ISSN 1939-9359, Vol. 70, no 6, p. 5551-5564Article in journal (Refereed) Published
Abstract [en]

This paper improves the fuel efficiency of a student-made parallel hybrid electric racing car whose internal combustion engine (ICE) either operates with peak efficiency or is turned off. The control to the ICE thus becomes a binary problem. Owing to the very limited computation resource onboard, the energy management strategy (EMS) for this car must have small time and space complexities. A computationally efficient controller that combines the advantages of dynamic programming (DP) and Pontryagins minimum principle (PMP) is developed to run on a low-cost microprocessor. DP is employed offline to calculate the optimal speed trajectory, which is used as the reference for the online PMP to determine the real-time ICE on/off status and the electric motor (EM) torques. The normal PMP derives the optimal costate trajectory through solving partial differential equations. The proposed quasi-PMP (Q-PMP) method finds the costate from the value function obtained by DP. The fuel efficiency and computational complexity of the proposed controller are compared against several state of art methods through both model-in-the-loop (MIL) and processor-in-the-loop (PIL) simulations. The new method reaches similar fuel efficiency as the explicit DP, but requires less than 1% onboard flash memory. The performance of the Q-PMP controller is compared between binary-controlled and continuously controlled engines. It achieves roughly 12% higher fuel efficiency for the binary engine with only approximately 1/3 CPU utilization.

Place, publisher, year, edition, pages
IEEE, 2021
Keywords
Hybrid electric vehicle, Energy management strategy, Dynamic programming, Pontryagin's minimum principle, Binary controlled internal combustion engine
National Category
Control Engineering
Research subject
Industrial Information and Control Systems; Vehicle and Maritime Engineering
Identifiers
urn:nbn:se:kth:diva-293604 (URN)10.1109/TVT.2021.3075729 (DOI)000671544000030 ()2-s2.0-85105030993 (Scopus ID)
Funder
XPRES - Initiative for excellence in production research
Note

QC 20250331

Available from: 2021-04-29 Created: 2021-04-29 Last updated: 2025-03-31Bibliographically approved
4. A Low-Complexity and High-Performance Energy Management Strategy of a Hybrid Electric Vehicle by Model Approximation
Open this publication in new window or tab >>A Low-Complexity and High-Performance Energy Management Strategy of a Hybrid Electric Vehicle by Model Approximation
2022 (English)In: 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE), Mexico City, Mexico: IEEE, 2022, p. 455-462Conference paper, Published paper (Refereed)
Abstract [en]

The fuel economy of a hybrid electric vehicle(HEV) is determined by its energy management strategy (EMS), while the conventional EMS usually suffers from enormous computation loads when solving a nonlinear optimization problem. To resolve this issue, this paper presents a computationally efficient EMS with close-to-optimal performance using very limited computation resources. Relying on the optimal solutions by offline dynamic programming (DP), a constrained model predictive control (MPC) can quickly determine the engine on/off status and then the torque split problem is solved by a value-based Pontryagin’s minimum principle (PMP). Two measures are taken to further reduce the online computation cost: by surface fitting, the tabular value function is replaced by piecewise linear polynomials and thus the memory occupation is greatly reduced; and by model approximation, the nonlinear torque split problem becomes a quadratic programming one that can be more rapidly solved. The testing results from processor-in-the-loop (PIL) simulation indicate that the proposed EMS can generate a fuel efficiency close to the one by DP, but saves 70% onboard memory space and 30% CPU utilization compared with the benchmark EMS without taking the two measures.

Place, publisher, year, edition, pages
Mexico City, Mexico: IEEE, 2022
Keywords
Hybrid electric vehicle, Energy management strategy, Value fitting, Model approximation, Quadratic programming
National Category
Control Engineering
Identifiers
urn:nbn:se:kth:diva-324357 (URN)10.1109/CASE49997.2022.9926717 (DOI)000927622400049 ()2-s2.0-85141714907 (Scopus ID)
Conference
2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)
Funder
XPRES - Initiative for excellence in production research
Note

Part of proceedings ISBN 978-1-6654-9043-6

QC 20230227

Available from: 2023-02-27 Created: 2023-02-27 Last updated: 2023-04-28Bibliographically approved
5. Computationally Efficient Energy Management for a Parallel Hybrid Electric Vehicle Using Adaptive Dynamic Programming
Open this publication in new window or tab >>Computationally Efficient Energy Management for a Parallel Hybrid Electric Vehicle Using Adaptive Dynamic Programming
(English)In: Article in journal (Refereed) Submitted
Abstract [en]

Hybrid electric vehicles (HEVs) rely on energy management strategies (EMSs) to achieve optimal fuel economy. However, both model- and learning-based EMSs have their respective limitations which negatively affect their performances in online applications. This paper presents a computationally efficient adaptive dynamic programming (ADP) approach that can not only rapidly calculate optimal control actions but also iteratively update the approximated value function (AVF) according to the actual fuel and electricity consumption with limited computation resources. Exploiting the AVF, the engine on/off switch and torque split problems are solved by one-step lookahead approximation and Pontryagin’s minimum principle (PMP), respectively. To raise the training speed and reduce the memory space, the tabular value function (VF) is approximated by carefully selected piecewise polynomials via parametric approximation. The advantages of the proposed EMS are threefold and verified by processor-in-the-loop (PIL) Monte Carlo simulations. First, the fuel efficiency of the proposed EMS is higher than that of an adaptive PMP and close to the theoretical optimum. Second, the new method can adapt to the changed driving conditions after a small number of learning iterations and then has higher fuel efficiency than a non-adaptive dynamic programming (DP)controller. Third, the computation efficiencies of the proposed AVF and a tabular VF are compared. The AVF data structure enables faster convergence and saves at least 70% of onboard memory space without obviously increasing the average CPU utilization.

Keywords
Hybrid electric vehicle, Energy management strategy, Adaptive dynamic programming, Approximated value function
National Category
Vehicle and Aerospace Engineering
Identifiers
urn:nbn:se:kth:diva-326338 (URN)
Funder
XPRES - Initiative for excellence in production research
Note

QC 20230503

Available from: 2023-04-28 Created: 2023-04-28 Last updated: 2025-02-14Bibliographically approved
6. Optimal and Adaptive Engine Switch Control for a Parallel Hybrid Electric Vehicle Using a Computationally Efficient Actor-Critic Method
Open this publication in new window or tab >>Optimal and Adaptive Engine Switch Control for a Parallel Hybrid Electric Vehicle Using a Computationally Efficient Actor-Critic Method
2023 (English)In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, Institute of Electrical and Electronics Engineers (IEEE) , 2023, Vol. 2023-June, p. 416-423Conference paper, Published paper (Refereed)
Abstract [en]

Energy management strategies (EMSs) are crucial to the fuel economy of hybrid electric vehicles (HEVs). However, due to the lack of efficient solving approaches, most of existing EMSs mainly focus on the optimal torque split between the internal combustion engine (ICE) and the electric motor but neglect improper ICE on/off switches, and thus usually suffer degraded fuel economy and even unacceptable drivability in practice. To tackle this issue, this paper presents a novel EMS that uses an efficient actor-critic (AC) method to regulate ICE switches with limited computation resources. While common AC methods use complex neural networks (NNs) with arbitrary initialization, the proposed AC uses piecewise cubic polynomials whose parameters are initialized based on optimized solutions of dynamic programming (DP). By this means, the AC can quickly converge with high computation efficiency. The testing results from processor-in-the-loop (PIL) simulations showcase that, compared with a rule-based EMS with tabular value functions, the proposed EMS can greatly improve the equivalent fuel economy by eliminating improper ICE switches after only several iterations of adaptive learning and dramatically save onboard memory space owing to the concise AC structure.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
Hybrid electric vehicle, Energy management strategy, Engine switch, Actor-critic method, Adaptive learning
National Category
Vehicle and Aerospace Engineering
Identifiers
urn:nbn:se:kth:diva-326339 (URN)10.1109/AIM46323.2023.10196276 (DOI)001051263900054 ()2-s2.0-85168411831 (Scopus ID)
Conference
2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2023, Seattle, WA, United States of America, 28 June-30 June 2023
Funder
XPRES - Initiative for excellence in production research
Note

QC 20230831

Available from: 2023-04-28 Created: 2023-04-28 Last updated: 2025-02-14Bibliographically approved

Open Access in DiVA

Fulltext(5271 kB)341 downloads
File information
File name FULLTEXT03.pdfFile size 5271 kBChecksum SHA-512
060ecb89cb62c2039740da816c43c64d78a77ad2f5999a4c36e4f018579139dc3f1ce8ecedea6e601fac21b4833e6bf02a3f5dc0ada5a7c743e6bf3e408aad3b
Type fulltextMimetype application/pdf

Other links

http:// Du som saknar dator/ datorvana kan kontakta service@itm.kth.se (English)

Authority records

Liu, Tong

Search in DiVA

By author/editor
Liu, Tong
By organisation
Mechatronics and Embedded Control Systems
Control EngineeringVehicle and Aerospace EngineeringEnergy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 366 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 634 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf