kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Practical Deployment Aspects of Cell-Free Massive MIMO Networks
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Communication Systems, CoS.ORCID iD: 0000-0002-6260-7241
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The ever-growing demand of wireless traffic poses a challenge for current cellular networks. Each new generation must find new ways to boost the network capacity and spectral efficiency (SE) per device. A pillar of 5G is massive multiple-input-multiple-output (MIMO) technology. Through utilizing a large number of antennas at each transmitting node, massive MIMO has the ability to multiplex several user equipments (UEs) on the same time-frequency resources via spatial multiplexing. Looking beyond 5G, cell-free massive MIMO has attracted a lot of attention for its ability to utilize spatial macro diversity and higher resilience to interference. The cell-free architecture is based on a large number of distributed access points (APs) jointly serving the UEs within a coverage area without creating artificial cell boundaries. It provides a promising solution that is focused on delivering uniform service quality throughout the mobile network. The main challenges of the cell-free network architecture lie in the computational complexity for signal processing and the huge fronthaul requirements for information exchange among the APs.

In this thesis, we tackle some of the inherent problems of the cell-free network architecture by providing distributed solutions to the power allocation and mobility management problems. We then introduce a new method for characterizing unknown interference in wireless networks.

For the problem of power allocation, a distributed learning-based solution that provides a good trade-off between SE performance and applicability for implementation in large-scale networks is developed with reduced fronthaul requirements and computational complexity. The problem is divided in a way that enables each AP (or group of APs) to separately decide on the power coefficients to the UEs based on the locally available information at the AP without exchanging information with the other APs, however, still attempting to achieve a network wide optimization objective. 

Regarding mobility management, a handover procedure is devised for updating the serving sets of APs and assigned pilot to each UE in a dynamic scenario considering UE mobility. The algorithm is tailored to reduce the required number of handovers per UE and changes in pilot assignment. Numerical results show that our proposed solution identifies the essential refinements since it can deliver comparable SE to the case when the AP-UE association is completely redone.

Finally, we developed a new technique based on a Bayesian approach to model the distribution of the unknown interference arising from scheduling variations in neighbouring cells. The method is shown to provide accurate modelling for the unknown interference power and an effective tool for robust rate allocation in the uplink with a guaranteed target outage performance.

Abstract [sv]

Den ständigt växande efterfrågan på trådlös datatrafik är en stor utmaning för dagens mobilnät. Varje ny nätgeneration måste hitta nya sätt att öka den totala kapaciteten och spektraleffektiviteten (SE) per uppkopplad enhet. En pelare i 5G är massiv-MIMO-teknik (multiple-input-multiple-output). Genom att använda ett stort antal antenner på varje mobilmast har massiv MIMO förmågan att kommunicera med flera användarutrustningar (eng. user equipment, UE) på samma tid/frekvensresurser via så kallad rumslig multiplexing. Om man ser bortom 5G-tekniken så har cellfri massiv-MIMO väckt stort intresse tack vare sin förmåga att utnyttja rumslig makrodiversitet för att förbättra täckningen och uppnå högre motståndskraft mot störningar. Den cellfria arkitekturen bygger på att ha ett stort antal distribuerade accesspunkter (AP) som gemensamt serverar UE:erna inom ett täckningsområde utan att dela upp området konstgjorda celler. Detta är en lovande lösning som är fokuserad på att leverera enhetliga datahastigheter i hela mobilnätet. De största forskningsutmaningarna med den cellfria nätverksarkitekturen ligger i beräkningskomplexiteten för signalbehandling och de enorma kraven på fronthaul-kablarna som möjliggör informationsutbyte mellan AP:erna.

I den här avhandlingen löser vi några av de grundläggande utmaningarna med den cellfria nätverksarkitekturen genom att tillhandahålla distribuerade algoritmlösningar på problem relaterade till signaleffektreglering och mobilitetshantering. Vi introducerar sedan en ny metod för att karakterisera okända störningar i trådlösa nätverk.

När det gäller signaleffektreglering så utvecklas en distribuerad inlärnings-baserad metod som ger en bra avvägning mellan SE-prestanda och tillämpbarhet för implementering i storskaliga cellfria nätverk med reducerade fronthaulkrav och lägre beräkningskomplexitet. Lösningen är uppdelat på ett sätt som gör det möjligt för varje AP (eller grupp av AP) att separat besluta om effektkoefficienterna relaterade till varje UE baserat på den lokalt tillgängliga informationen vid AP:n utan att utbyta information med de andra AP:erna, men ändå försöka uppnå ett nätverksomfattande optimeringsmål.

När det gäller mobilitetshantering utformas en överlämningsprocedur som dynamiskt uppdaterar vilken uppsättning av AP:er som servar en viss UE och vilken pilotsekvens som används när den rör sig över täckningsområdet. Algoritmen är skräddarsydd för att minska antalet överlämningar per UE och förändringar i pilottilldelningen. Numeriska resultat visar att vår föreslagna lösning identifierar de väsentliga förfiningarna eftersom den kan leverera jämförbar SE som när AP-UE-associationen görs om helt och hållet.

Slutligen utvecklade vi en ny Bayesiansk metod för att modellera den statistiska fördelningen av de okända störningarna som uppstår på grund av schemaläggningsvariationer i närliggande celler. Metoden har visat sig ge en korrekt modell av den okända störningseffekten och är ett effektivt verktyg för robust SE-allokering i upplänken med en garanterad maximal avbrottsnivå.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. , p. xii, 42
Series
TRITA-EECS-AVL ; 2023:30
Keywords [en]
Cell-free massive MIMO, power allocation, sum-SE maximization, proportional fairness, spectral efficiency, deep learning, handover, cluster formation, pilot assignment, unknown interference, outage, multiuser MIMO.
Keywords [sv]
Cellfri massiv MIMO, effektreglering, summa-SE-maximering, proportionell rättvisa, spektraleffektivitet, djupinlärning, överlämning, klusterbildning, pilottilldelning, okända störningar, avbrottsnivå, MIMO för flera användare.
National Category
Communication Systems
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-326479ISBN: 978-91-8040-541-6 (print)OAI: oai:DiVA.org:kth-326479DiVA, id: diva2:1754170
Presentation
2023-05-24, Zoom: https://kth-se.zoom.us/j/69801049930, Ka-301, Electrum, Kistagången 16, Kista, Stockholm, 13:15 (English)
Opponent
Supervisors
Note

QC 20230503

Available from: 2023-05-03 Created: 2023-05-02 Last updated: 2023-05-15Bibliographically approved
List of papers
1. Learning-Based Downlink Power Allocation in Cell-Free Massive MIMO Systems
Open this publication in new window or tab >>Learning-Based Downlink Power Allocation in Cell-Free Massive MIMO Systems
2023 (English)In: IEEE Transactions on Wireless Communications, ISSN 1536-1276, E-ISSN 1558-2248, Vol. 22, no 1, p. 174-188Article in journal (Refereed) Published
Abstract [en]

This paper considers a cell-free massive multiple-input multiple-output (MIMO) system that consists of a large number of geographically distributed access points (APs) serving multiple users via coherent joint transmission. The downlink performance of the system is evaluated, with maximum ratio and regularized zero-forcing precoding, under two optimization objectives for power allocation: sum spectral efficiency (SE) maximization and proportional fairness. We present iterative centralized algorithms for solving these problems. Aiming at a less computationally complex and also distributed scalable solution, we train a deep neural network (DNN) to approximate the same network-wide power allocation. Instead of training our DNN to mimic the actual optimization procedure, we use a heuristic power allocation, based on large-scale fading (LSF) parameters, as the pre-processed input to the DNN. We train the DNN to refine the heuristic scheme, thereby providing higher SE, using only local information at each AP. Another distributed DNN that exploits side information assumed to be available at the central processing unit is designed for improved performance. Further, we develop a clustered DNN model where the LSF parameters of a small number of APs, forming a cluster within a relatively large network, are used to jointly approximate the power coefficients of the cluster.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Keywords
Cell-free massive MIMO, power allocation, sum-SE maximization, proportional fairness, deep learning, spectral efficiency, downlink
National Category
Telecommunications
Identifiers
urn:nbn:se:kth:diva-324707 (URN)10.1109/TWC.2022.3192203 (DOI)000925620400012 ()2-s2.0-85135748426 (Scopus ID)
Note

QC 20230509

Available from: 2023-03-15 Created: 2023-03-15 Last updated: 2025-04-15Bibliographically approved
2. Soft Handover Procedures in mmWave Cell-Free Massive MIMO Networks
Open this publication in new window or tab >>Soft Handover Procedures in mmWave Cell-Free Massive MIMO Networks
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This paper considers a mmWave cell-free massive MIMO (multiple-input multiple-output) network composed of a large number of geographically distributed access points (APs) simultaneously serving multiple user equipments (UEs) via coherent joint transmission. We address UE mobility in the downlink (DL) with imperfect channel state information (CSI) and pilot training. Aiming at extending traditional handover concepts to the challenging AP-UE association strategies of cell-free networks, distributed algorithms for joint pilot assignment and cluster formation are proposed in a dynamic environment considering UE mobility. The algorithms provide a systematic procedure for initial access and update of the serving set of APs and assigned pilot sequence to each UE. The principal goal is to limit the necessary number of AP and pilot changes, while limiting computational complexity. The performance of the system is evaluated, with maximum ratio and regularized zero-forcing precoding, in terms of spectral efficiency (SE). The results show that our proposed distributed algorithms effectively identify the essential AP-UE association refinements. It also provides a significantly lower average number of pilot changes compared to an ultra-dense network (UDN). Moreover, we develop an improved pilot assignment procedure that facilitates massive access to the network in highly loaded scenarios.

Keywords
Cell-free massive MIMO, handover, cluster formation, pilot assignment, mobility management, spectral efficiency.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-326365 (URN)
Funder
Swedish Foundation for Strategic Research
Note

QC 20230509

Available from: 2023-04-30 Created: 2023-04-30 Last updated: 2023-05-09Bibliographically approved
3. A Bayesian Approach to Characterize Unknown Interference Power in Wireless Networks
Open this publication in new window or tab >>A Bayesian Approach to Characterize Unknown Interference Power in Wireless Networks
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The existence of unknown interference is a prevalent problem in wireless communication networks. Especially in multi-user multiple-input multiple-output (MIMO) networks, where a large number of user equipments are served on the same time-frequency resources, the outage performance may be dominated by the unknown interference arising from scheduling variations in neighboring cells. In this letter, we propose a Bayesian method for modeling the unknown interference power in the uplink of a cellular network. Numerical results show that our method accurately models the distribution of the unknown interference power and can be effectively used for rate adaptation with guaranteed target outage performance.

Keywords
Outage probability, MU-MIMO, unknown interference, multiple access, spectral efficiency, uplink (UL).
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-326363 (URN)
Funder
Swedish Foundation for Strategic Research
Note

QC 20230508

Available from: 2023-04-30 Created: 2023-04-30 Last updated: 2023-05-22Bibliographically approved

Open Access in DiVA

Mahmoud_Zaher_licentiate(2994 kB)1037 downloads
File information
File name FULLTEXT01.pdfFile size 2994 kBChecksum SHA-512
2fcf324a6c2da7fb86f511798a63969c175367a7b0afb660ed32caa57fb61d186af1e91bacb0db9708b5bd05a6163ce913ae8320f7d812686e5978af8ec129d4
Type fulltextMimetype application/pdf

Authority records

Zaher, Mahmoud

Search in DiVA

By author/editor
Zaher, Mahmoud
By organisation
Communication Systems, CoS
Communication Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 1038 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 879 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf