kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Application of Integrated Vehicle Health Management in Automated Decision-making for Driverless Vehicles
KTH, School of Industrial Engineering and Management (ITM), Engineering Design, Mechatronics and Embedded Control Systems. KTH, School of Industrial Engineering and Management (ITM), Centres, Integrated Transport Research Lab, ITRL.ORCID iD: 0000-0002-7933-039x
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Vehicles are becoming increasingly complex and are prone to faults and failures, which threaten the dependability of vehicles in terms of availability, reliability, safety, and security. When vehicles are detected with certain types of faults and get into alarm situations, human drivers play a vital role in deciding what strategies and actions to take. Once driverless vehicles are introduced, human drivers' roles in decision-making will no longer exist, which urges new solutions on both technological and managerial levels. 

This thesis depicts the current human decision-making process by analyzing field study data in the truck industry, which contributes to gaining domain knowledge and identifying research gaps. An integrated vehicle health management scheme is applied to automate this decision-making process by integrating vehicle health state estimation and prediction, resource utilization, and self-adaptive management. To implement this scheme, fault diagnosis and decision-making methods are proposed, and a decision support system is designed. 

Fault diagnosis is a critical functional module for providing reliable vehicle health state information for decision-making. To address the influence of uncertainties in fault diagnosis, we propose an uncertainty analysis framework and a fault diagnosis method using Bayesian inference.Simulation experiments validate that the proposed method could effectively diagnose the root cause of fault symptoms under environmental uncertainty. 

A risk-based automated decision-making method is presented, which imitates the human decision-making process.On this basis, a collaborative decision-making method is proposed by considering traffic congestion, which is a currently neglected public concern.Experiment results show that the proposed methods could effectively reduce the economic risk and the risk of traffic congestion.

In the end, a decision support system is designed to provide decision information to its human users. Besides, reviewing and learning functions are considered for gaining knowledge and achieving full automation in the long run. Additional system stakeholders from the public sector regarding safety, traffic, and the environment are considered. A transparent, interactive, and adaptive graphical user interface of the system is designed to enhance user experience and trust.

This thesis shows the potential of automated decision-making and technical system design in increasing corporate profits, catalyzing public-private partnerships, enabling technological transformation, and achieving a more sustainable transportation system.

Abstract [sv]

Fordon blir allt mer komplexa och är benägna att få fler felkällor, vilket hotar fordonens pålitlighet när det gäller tillgänglighet, tillförlitlighet och säkerhet.När fordon upptäcks med vissa typer av fel och hamnar i larmsituationer spelar mänskliga förare en avgörande roll när det gäller att bestämma vilka åtgärder som ska vidtas.När förarlösa fordon väl har introducerats kommer mänskliga förares roller i beslutsfattandet inte längre vara tillgängligt, vilket kräver nya lösningar på både teknisk nivå och på ledningsnivå.

Denna avhandling skildrar den nuvarande mänskliga beslutsprocessen genom att analysera fältstudiedata i lastbilsindustrin, vilket bidrar till mer kunskap om området och att identifiera forskningsluckor.Ett integrerat system för fordonshälsa används för att automatisera denna beslutsprocess genom att integrera uppskattning och förutsägelse av fordonets hälsotillstånd, resursanvändning och fordonets möjlighet att själva anpassa sig för att hantera fel.För att implementera detta schema föreslås feldiagnostik och beslutsmetoder, och ett beslutsstödssystem utformas.

Feldiagnos är en kritisk funktionsmodul för att tillhandahålla tillförlitlig information om fordonets hälsotillstånd för beslutsfattande.För att hantera osäkerheter i feldiagnostik, föreslår vi ett ramverk för osäkerhetsanalys och en feldiagnosmetod som använder Bayesiansk slutledning.Simuleringsexperiment bekräftar att den föreslagna metoden effektivt kan diagnostisera grundorsaken till felsymptom, även vid osäkerhet om fordonets kontext.

En riskbaserad automatiserad beslutsmetod presenteras, som imiterar den mänskliga beslutsprocessen.På grundval av detta föreslås en samarbetsmetod för beslutsfattande genom att överväga trafikstockningar, som är ett stort allmänt problem.Experimentresultat visar att de föreslagna metoderna effektivt kan minska den ekonomiska risken och risken för trafikstockningar.

Dessutom har ett system för beslutsstöd utformats för att ge information till mänskliga användare.Dessutom övervägs gransknings- och inlärningsfunktioner för att få kunskap och uppnå full automation på längre sikt.Ytterligare aktörer från offentlig sektor avseende säkerhet, trafik och miljö beaktas även.Ett transparent, interaktivt och adaptivt grafiskt användargränssnitt för systemet är utformat för att förbättra användarupplevelsen och förtroendet.

Denna avhandling visar potentialen hos automatiserat beslutsfattande och teknisk systemdesign för att öka företagens vinster, ökad möjligheten till partnerskap mellan offentlig och privata aktörer samt möjliggöra teknisk transformation och för att uppnå ett mer hållbart transportsystem.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. , p. 66
Series
TRITA-ITM-AVL ; 2023:15
Keywords [en]
Driverless vehicles, Integrated vehicle health management, Automated decision-making, Fault diagnosis, Public-private partnership.
Keywords [sv]
Förarlösa fordon, Integrerad fordonshälsohantering, Automatiserat beslutsfattande, Feldiagnostik, Offentligt-privat partnerskap.
National Category
Transport Systems and Logistics Vehicle and Aerospace Engineering Control Engineering
Research subject
Machine Design
Identifiers
URN: urn:nbn:se:kth:diva-326545ISBN: 978-91-8040-598-0 (print)OAI: oai:DiVA.org:kth-326545DiVA, id: diva2:1754807
Public defence
2023-05-29, F3 / https://kth-se.zoom.us/j/68692607321, Lindstedtsvägen 26, Stockholm, 13:00 (English)
Opponent
Supervisors
Available from: 2023-05-04 Created: 2023-05-04 Last updated: 2025-02-14Bibliographically approved
List of papers
1. Probabilistic Inference of Fault Condition of Cyber-Physical Systems Under Uncertainty
Open this publication in new window or tab >>Probabilistic Inference of Fault Condition of Cyber-Physical Systems Under Uncertainty
2020 (English)In: IEEE Systems Journal, ISSN 1932-8184, E-ISSN 1937-9234, Vol. 14, no 3, p. 3256-3266Article in journal (Refereed) Published
Abstract [en]

Cyber-physical systems (CPS) are paving new ground with increasing levels of automation and usage in applications with complex environments, posing greater challenges in terms of safety and reliability. The increasing complexity of CPS environments, tasks, and systems leads to more uncertainties. Unless properly managed, these uncertainties may lead to false detection of real fault condition of a system, which in turn may affect decision making and potentially cause fatal consequences. In order to implement safety-critical missions, such as autonomous driving, it is essential to develop a reliable monitoring and assessment service dealing with the complexity and uncertainty issues. In this article, we propose a fault detection function based on Bayesian inference, which combines empirical knowledge with information of the specific system. By considering uncertainties as possible causes for false detection, various uncertainties during the detection process are analyzed, and the ways to quantify and propagate them are explored. As a result, probabilistic inference is achieved for distinguishing system faults from uncertainties, which contributes to more reliable detection results regarding system faults under dynamically changing environments. A case study on an microelectro mechanical system (MEMS) accelerometer is conducted and the result shows that the fault detection function effectively distinguishes system faults and uncertainties arising from the environment.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2020
Keywords
Bayesian inference (BI), cyber-physical systems (CPS), fault detection, monitoring and assessment service (MAS), uncertainty
National Category
Control Engineering
Identifiers
urn:nbn:se:kth:diva-282240 (URN)10.1109/JSYST.2020.2965400 (DOI)000566404500019 ()2-s2.0-85090979405 (Scopus ID)
Note

QC 20201103

Available from: 2020-11-03 Created: 2020-11-03 Last updated: 2023-05-04Bibliographically approved
2. Short-term maintenance planning of autonomous trucks for minimizing economic risk
Open this publication in new window or tab >>Short-term maintenance planning of autonomous trucks for minimizing economic risk
2022 (English)In: Reliability Engineering & System Safety, ISSN 0951-8320, E-ISSN 1879-0836, Vol. 220, article id 108251Article in journal (Refereed) Published
Abstract [en]

New autonomous driving technologies are emerging every day and some of them have been commercially applied in the real world. While benefiting from these technologies, autonomous trucks are facing new challenges in short-term maintenance planning, which directly influences the truck operator’s profit. In this paper, we implement a vehicle health management system by addressing the maintenance planning issues of autonomous trucks on a transport mission. We also present a maintenance planning model using a risk-based decision-making method, which identifies the maintenance decision with minimal economic risk of the truck company. Both availability losses and maintenance costs are considered when evaluating the economic risk. We demonstrate the proposed model by numerical experiments illustrating real-world scenarios. In the experiments, compared to three baseline methods, the expected economic risk of the proposed method is reduced by up to 47%. We also conduct sensitivity analyses of different model parameters. The analyses show that the economic risk significantly decreases when the estimation accuracy of remaining useful life, the maximal allowed time of delivery delay before order cancellation, or the number of workshops increases. The experiment results contribute to identifying future research and development attentions of autonomous trucks from an economic perspective.

Place, publisher, year, edition, pages
Elsevier BV, 2022
National Category
Transport Systems and Logistics
Research subject
Transport Science, Transport Systems; Industrial Information and Control Systems; Planning and Decision Analysis, Risk and Safety
Identifiers
urn:nbn:se:kth:diva-307578 (URN)10.1016/j.ress.2021.108251 (DOI)000760343700003 ()2-s2.0-85121243907 (Scopus ID)
Note

QC 20220328

Available from: 2022-01-31 Created: 2022-01-31 Last updated: 2023-05-04Bibliographically approved
3. Multi-criteria Decision-making of Intelligent Vehicles under Fault Condition Enhancing Public-private Partnership
Open this publication in new window or tab >>Multi-criteria Decision-making of Intelligent Vehicles under Fault Condition Enhancing Public-private Partnership
(English)Manuscript (preprint) (Other academic)
Abstract [en]

New autonomous driving technologies are emerging every day and some of them have been commercially applied in the real world. While benefiting from these technologies, autonomous trucks are facing new challenges in short-term maintenance planning, which directly influences the truck operator's profit. In this paper, we implement a vehicle health management system by addressing the maintenance planning issues of autonomous trucks on a transport mission. We also present a maintenance planning model using a risk-based decision-making method, which identifies the maintenance decision with minimal economic risk of the truck company. Both availability losses and maintenance costs are considered when evaluating the economic risk. We demonstrate the proposed model by numerical experiments illustrating real-world scenarios. In the experiments, compared to three baseline methods, the expected economic risk of the proposed method is reduced by up to 47%. We also conduct sensitivity analyses of different model parameters. The analyses show that the economic risk significantly decreases when the estimation accuracy of remaining useful life, the maximal allowed time of delivery delay before order cancellation, or the number of workshops increases. The experiment results contribute to identifying future research and development attentions of autonomous trucks from an economic perspective.

Keywords
Autonomous truck, Maintenance planning, Risk-based decision-making, Economic risk, Availability loss, Maintenance cost
National Category
Transport Systems and Logistics
Identifiers
urn:nbn:se:kth:diva-326532 (URN)
Note

QC 20230504

Available from: 2023-05-04 Created: 2023-05-04 Last updated: 2023-05-04Bibliographically approved
4. Design of an intelligent post-diagnosis decision support system for highly automated trucks
Open this publication in new window or tab >>Design of an intelligent post-diagnosis decision support system for highly automated trucks
(English)Manuscript (preprint) (Other academic)
Abstract [en]

For human-driven trucks transiting to highly automated ones, we need to make the post-diagnosis decision-making more automated and intelligent, which is critical for vehicle reliability and transport efficiency. For this purpose, we learn from industry practitioners to depict the current post-diagnosis decision-making process in the truck industry and identify the gaps between the current practice and a desired future in a highly automated context. We also design an intelligent post-diagnosis decision support system using advanced technologies to bridge critical gaps. Based on a real-world freight delivery scenario and a risk-based decision-making approach, a concrete instance of the decision support system design is presented as a case study, including the design of graphical user interfaces. This work is mainly for adapting the post-diagnosis decision-making of trucks to a highly automated context and substantially increasing the performance and quality of the decision-making process.

Keywords
Highly automated trucks, Post-diagnosis decision-making, Decision support system, Industry practice, Gap analysis, System design
National Category
Transport Systems and Logistics
Identifiers
urn:nbn:se:kth:diva-326533 (URN)
Funder
Vinnova, F8974
Note

QC 20230504

Available from: 2023-05-04 Created: 2023-05-04 Last updated: 2023-09-27Bibliographically approved

Open Access in DiVA

Kappa_summary(1456 kB)483 downloads
File information
File name FULLTEXT01.pdfFile size 1456 kBChecksum SHA-512
f140457f9ed4cd991c42d930a8756e021f47e07442d85069a8ee90a904bb849da943708c93abd384ee38d76c54347e9e48105c94db24c14a90cd928c2abba736
Type fulltextMimetype application/pdf

Other links

http://Du som saknar dator/ datorvana kan kontakta service@itm.kth.se (English)

Authority records

Tao, Xin

Search in DiVA

By author/editor
Tao, Xin
By organisation
Mechatronics and Embedded Control SystemsIntegrated Transport Research Lab, ITRL
Transport Systems and LogisticsVehicle and Aerospace EngineeringControl Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 485 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1310 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf