kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Floquet stability analysis of pulsatile flow in toroidal pipes
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics, Turbulent simulations laboratory.ORCID iD: 0000-0002-2460-578X
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics, Turbulent simulations laboratory.ORCID iD: 0000-0002-8426-4833
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics, Turbulent simulations laboratory.ORCID iD: 0000-0001-7864-3071
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The linear temporal stability of the fully-developed pulsatile flow in a torus with high curvature is investigated using Floquet theory. The baseflow is computed via a Newton--Raphson  iteration in frequency space to obtain basic states at supercritical Reynolds numbers in the steady state for two curvatures,= 0.1 and = 0.3, exhibiting structurally different linear instabilities in the steady case. The addition of a pulsatile component is found to be overall stabilising over a wide range of pulsation amplitudes, in particular for the higher values of the curvature. The pulsatile flows are found to be at most transiently stable with large intracyclic growth rate variations even at small pulsation amplitudes. While these growth rates are likely insufficient to trigger abrupt transition at the parameters in this work, the trends indicate that this is indeed likely for higher pulsation amplitudes, similar to pulsatile flow in straight pipes. At the edge of the considered parameter range, subharmonic eigenvalue orbits in the local spectrum of the time-periodic operator, recently found in pulsating channel flow, have been confirmed also for pulsatile flow in toroidal pipes underlining the generality of this phenomenon.

Keywords [en]
Floquet analysis, linear stability, time-periodic flows
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-326733OAI: oai:DiVA.org:kth-326733DiVA, id: diva2:1755859
Funder
EU, European Research Council, 694452-TRANSEP-ERC-2015-AdGSwedish Research Council, 2017-04421
Note

QC 20230511

Available from: 2023-05-09 Created: 2023-05-09 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Linear and non-linear dynamics of non-autonomous flows
Open this publication in new window or tab >>Linear and non-linear dynamics of non-autonomous flows
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fluid flows subject to time-dependent external forces or boundary conditions are ubiquitous in biology and technical applications. Whether one considers birds flying by flapping their wings or the gust response of wind turbines, the flow is non-autonomous. This thesis investigates the influence of external time-dependence on the non-linear evolution of fluid flows, as well as on the linear response to small disturbances that determines their stability. 

    For the analysis of the time-periodic pulsatile flow through toroidal pipes, an iterative fixed-point solver in frequency space is developed and validated to obtain the baseflows. The method is used to explore the effect of pulsations on the flow through tori with relevant curvatures. Using the Floquet framework, the linear stability of the flow close to criticality is investigated, revealing strong sensitivity to pulsations that are mostly stabilising.

    Considering the local stability of pulsating plane Poiseuille flow, the eigenpairs of the linear operator are tracked over time producing subharmonic eigenvalue orbits. Their appearance is traced to spectral degeneracies of the operator, leading to the transition of the harmonic disturbance between eigenvalue trajectories involving non-modal growth bursts. The same flow case is then used to assess the potential of the optimally time-dependent (OTD) framework for transient linear stability analysis of flows with arbitrary time-dependence using a localised linear/non-linear implementation aimed at open flows.

    This framework is then used to track the linear stability of laminar separation bubbles on pitching wing sections. On a natural laminar flow airfoil, the global mode corresponding to an absolute local instability is identified at the rear of the bubble, causing its breakdown to turbulence. In the case of an airfoil undergoing dynamic stall, the OTD modes reveal the main instability on the shear layer of the bubble as well as growth bursts correlated with vortex shedding.

    The influence of low-amplitude free-stream disturbances on the onset of dynamic stall is investigated and the onset of intermittent vortex shedding during the bubble bursting is documented. The repeated appearance of the phenomenon in a set of flow realisations confirmed its statistical relevance. The Proper Orthogonal Decomposition framework is extended to include time. This allows for the objective extraction of transient structures from data.

Abstract [sv]

Flöden som är föremål för tidsberoende yttre krafter eller randvillkor är vanligt förekommande inom biologi och tekniska tillämpningar. Oavsett om man tittar på fåglar som flyger genom att flaxa med vingarna eller vindturbiners respons på en vindil, så är flödet icke-autonomt. Denna avhandling undersöker inflytandet av externt tidsberoende på den icke-linjära flödesutvecklingen, liksom på den linjära responsen på små störningar som bestämmer dess stabilitet.

    För analysen av tids-periodiska pulserande flöden genom toroidala rör utvecklas och valideras en iterativ fixpunktlösare i frekvensrummet för att beräkna basflödena. Metoden används för att utforska effekten av pulsationer på flödet genom rör med relevanta krökningar. Genom att använda Floquet-ramverket undersöks flödets linjära stabilitet nära de kritiska parametervärden som visar en stark känslighet för pulsationer som främst är stabiliserande. 

    I den lokala stabiliteten av pulserande plan Poiseuille strömning följs egenvärden hos den linjära operatorn över tiden där subharmoniska egenvärdes-trajektorier uppstår. Deras ursprung spåras till spektrala degenereringar av operatorn, vilket leder till övergångar av den harmoniska störningen mellan egenvärdestrajektorierna som involverar icke-modal tillväxt. Samma strömings-fallet används sedan för att bedöma potentialen hos optimalt tidsberoende (OTD) ramverket för transient linjär stabilitetsanalys av flöden med godtyckligt tidsberoende med hjälp av en lokaliserad linjär/icke-linjär implementation anpassad till öppna flöden.

    Detta ramverk används sedan för att följa den linjära stabiliteten hos laminära separationsbubblor på oscilerande vingar. På en vingprofil identifieras den globala moden som motsvarar en absolut lokal instabilitet vid bubblans ände, vilket orsakar dess sammanbrott till turbulens. I en annan vinge som genomgår dynamisk stall avslöjar OTD-moderna den viktigaste skärskiktsinstabiliteten i bubblan samt tillväxt som korrelerar med virvelavlösning.

    Inflytandet av låg fri-strömsturbulens på starten på dynamisk stall undersöks och uppträdandet av intermitent virvelavlösning under bubblans sammanbrott dokumenteras. Den upprepade förekomsten av fenomenet i olika simuleringar av samma flödesfall bekräftar dess statistiska relevans. Proper Orthogonal Decomposition utökas genom att inkludera tiden. Analysen möjliggör att extrahera transienta strukturer från data på ett objektivt sätt.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2023. p. 105
Series
TRITA-SCI-FOU ; 2023:22
Keywords
Time-dependent flows, linear stability, non-linear dynamics, Floquet analysis, optimally time-dependent modes
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-326740 (URN)978-91-8040-574-4 (ISBN)
Public defence
2023-06-02, Kollegiesalen, Brinellvägen 6, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
EU, European Research Council, 694452-TRANSEP-ERC-2015-AdG
Note

QC 230510

Available from: 2023-05-10 Created: 2023-05-10 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

fulltext(5218 kB)272 downloads
File information
File name FULLTEXT01.pdfFile size 5218 kBChecksum SHA-512
333aa2e3047fdd0bab6606817b1c5b082141b9a2b058afcfbc4056214c8363533ad7ff729fcf24dfcf20961615ec61b189e2500494fc6ef7c47e3a4ad05ddbc3
Type fulltextMimetype application/pdf

Authority records

Lupi, ValerioHenningson, Dan S.

Search in DiVA

By author/editor
Kern, J. SimonLupi, ValerioHenningson, Dan S.
By organisation
Turbulent simulations laboratory
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar
Total: 272 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 290 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf