kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterisation of the laminar pulsatile flow in toroidal pipes
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics, Turbulent simulations laboratory.ORCID iD: 0000-0002-8426-4833
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics, Turbulent simulations laboratory.ORCID iD: 0000-0002-2460-578X
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics, Turbulent simulations laboratory. Institute of Fluid Mechanics (LSTM), Friedrich-Alexander-Universität (FAU), DE-91058 Erlangen-N ̈urnberg, Germany.ORCID iD: 0000-0001-9627-5903
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This study analyses the main characteristics of the fully developed laminar pulsatile flow in a toroidal pipe as the governing parameters vary. A novel computational technique is developed to obtain time-periodic solutions of the Navier--Stokes equations. They are computed as fixed points of the system in the frequency domain via the Newton-Raphson method. Drawbacks and advantages of the adopted methodology with respect to a time-stepping technique are discussed. The unsteady component of the driving pressure gradient is found to change linearly with the pulsation amplitude, with a proportionality coefficient dependent on the pulsation frequency. Although the time-averaged streamwise wall shear stress is very close to the value in the steady case, very large fluctuations are observed within the period. Flow reversal occurs during certain time intervals in the period for high pulsation amplitudes. The analysis of the spatial structure of the unsteady component of the velocity field shows that three different flow regimes can be identified, depending on the pulsation frequency, termed quasi-steady, intermediate and plug-flow regimes.

National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-326734OAI: oai:DiVA.org:kth-326734DiVA, id: diva2:1755865
Funder
Swedish Research Council, 2017-04421EU, European Research Council, 694452-TRANSEP-ERC-2015-AdG
Note

QC 20230511

Available from: 2023-05-09 Created: 2023-05-09 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Linear and non-linear dynamics of non-autonomous flows
Open this publication in new window or tab >>Linear and non-linear dynamics of non-autonomous flows
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fluid flows subject to time-dependent external forces or boundary conditions are ubiquitous in biology and technical applications. Whether one considers birds flying by flapping their wings or the gust response of wind turbines, the flow is non-autonomous. This thesis investigates the influence of external time-dependence on the non-linear evolution of fluid flows, as well as on the linear response to small disturbances that determines their stability. 

    For the analysis of the time-periodic pulsatile flow through toroidal pipes, an iterative fixed-point solver in frequency space is developed and validated to obtain the baseflows. The method is used to explore the effect of pulsations on the flow through tori with relevant curvatures. Using the Floquet framework, the linear stability of the flow close to criticality is investigated, revealing strong sensitivity to pulsations that are mostly stabilising.

    Considering the local stability of pulsating plane Poiseuille flow, the eigenpairs of the linear operator are tracked over time producing subharmonic eigenvalue orbits. Their appearance is traced to spectral degeneracies of the operator, leading to the transition of the harmonic disturbance between eigenvalue trajectories involving non-modal growth bursts. The same flow case is then used to assess the potential of the optimally time-dependent (OTD) framework for transient linear stability analysis of flows with arbitrary time-dependence using a localised linear/non-linear implementation aimed at open flows.

    This framework is then used to track the linear stability of laminar separation bubbles on pitching wing sections. On a natural laminar flow airfoil, the global mode corresponding to an absolute local instability is identified at the rear of the bubble, causing its breakdown to turbulence. In the case of an airfoil undergoing dynamic stall, the OTD modes reveal the main instability on the shear layer of the bubble as well as growth bursts correlated with vortex shedding.

    The influence of low-amplitude free-stream disturbances on the onset of dynamic stall is investigated and the onset of intermittent vortex shedding during the bubble bursting is documented. The repeated appearance of the phenomenon in a set of flow realisations confirmed its statistical relevance. The Proper Orthogonal Decomposition framework is extended to include time. This allows for the objective extraction of transient structures from data.

Abstract [sv]

Flöden som är föremål för tidsberoende yttre krafter eller randvillkor är vanligt förekommande inom biologi och tekniska tillämpningar. Oavsett om man tittar på fåglar som flyger genom att flaxa med vingarna eller vindturbiners respons på en vindil, så är flödet icke-autonomt. Denna avhandling undersöker inflytandet av externt tidsberoende på den icke-linjära flödesutvecklingen, liksom på den linjära responsen på små störningar som bestämmer dess stabilitet.

    För analysen av tids-periodiska pulserande flöden genom toroidala rör utvecklas och valideras en iterativ fixpunktlösare i frekvensrummet för att beräkna basflödena. Metoden används för att utforska effekten av pulsationer på flödet genom rör med relevanta krökningar. Genom att använda Floquet-ramverket undersöks flödets linjära stabilitet nära de kritiska parametervärden som visar en stark känslighet för pulsationer som främst är stabiliserande. 

    I den lokala stabiliteten av pulserande plan Poiseuille strömning följs egenvärden hos den linjära operatorn över tiden där subharmoniska egenvärdes-trajektorier uppstår. Deras ursprung spåras till spektrala degenereringar av operatorn, vilket leder till övergångar av den harmoniska störningen mellan egenvärdestrajektorierna som involverar icke-modal tillväxt. Samma strömings-fallet används sedan för att bedöma potentialen hos optimalt tidsberoende (OTD) ramverket för transient linjär stabilitetsanalys av flöden med godtyckligt tidsberoende med hjälp av en lokaliserad linjär/icke-linjär implementation anpassad till öppna flöden.

    Detta ramverk används sedan för att följa den linjära stabiliteten hos laminära separationsbubblor på oscilerande vingar. På en vingprofil identifieras den globala moden som motsvarar en absolut lokal instabilitet vid bubblans ände, vilket orsakar dess sammanbrott till turbulens. I en annan vinge som genomgår dynamisk stall avslöjar OTD-moderna den viktigaste skärskiktsinstabiliteten i bubblan samt tillväxt som korrelerar med virvelavlösning.

    Inflytandet av låg fri-strömsturbulens på starten på dynamisk stall undersöks och uppträdandet av intermitent virvelavlösning under bubblans sammanbrott dokumenteras. Den upprepade förekomsten av fenomenet i olika simuleringar av samma flödesfall bekräftar dess statistiska relevans. Proper Orthogonal Decomposition utökas genom att inkludera tiden. Analysen möjliggör att extrahera transienta strukturer från data på ett objektivt sätt.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2023. p. 105
Series
TRITA-SCI-FOU ; 2023:22
Keywords
Time-dependent flows, linear stability, non-linear dynamics, Floquet analysis, optimally time-dependent modes
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-326740 (URN)978-91-8040-574-4 (ISBN)
Public defence
2023-06-02, Kollegiesalen, Brinellvägen 6, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
EU, European Research Council, 694452-TRANSEP-ERC-2015-AdG
Note

QC 230510

Available from: 2023-05-10 Created: 2023-05-10 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

fulltext(2079 kB)192 downloads
File information
File name FULLTEXT01.pdfFile size 2079 kBChecksum SHA-512
3d21129e10059cdcc11db69c07d63f90c8aebfa51ede525d2e0ad4ea8209951e70df184ceac536984b689fd83c8c3f409a99cb5253155cd1e5319af5531b0b27
Type fulltextMimetype application/pdf

Authority records

Lupi, ValerioKern, J. SimonSchlatter, Philipp

Search in DiVA

By author/editor
Lupi, ValerioKern, J. SimonSchlatter, Philipp
By organisation
Turbulent simulations laboratory
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar
Total: 192 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 373 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf