kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spintronic and Electronic Oscillators for Magnetic Field Sensing and Ising Machines
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems.ORCID iD: 0000-0002-9919-9886
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Oscillators can exhibit a range of complex dynamics which are often encountered in nature. These characteristics include synchronization, injection locking, chaos, bifurcations, etc. To date, the applications of electronic oscillators has mostly been limited to communication systems. However, in recent years, the possibility of using the rich dynamics of oscillators in unconventional applications, including time-based information processing and computational applications, has been also explored. In this thesis, this potential is investigated using emerging spintronic oscillators and established electronic oscillators. 

The first part of this thesis targets emerging spintronic oscillators, which exhibit a range of attractive features, including GHz operating frequency, wide tunability and nanoscale size. To explore the potential of these devices, an electrical behavioural model was developed for the promising three-terminal spin-Hall nano-oscillator. The behavioural model is based on the macrospin approximation, which is commonly used to describe the operation principles of spintronic oscillators, and it was implemented in Verilog-A. Moreover, the behavioural model was verified against experimental measurements from literature, demonstrating that the most important characteristics of three-terminal spin-Hall nano-oscillators are accurately captured. Subsequently, two potential applications that could benefit from the unique characteristics of spintronic oscillators were identified and explored. First, a magnetic field sensing system, which takes advantage of the wide frequency tunability of spintronic oscillators as a function of externally applied magnetic field, was proposed and demonstrated. This sensing system, inspired by voltage-controlled oscillator analog-to-digital converters, shows performance similar to the state-of-the-art magnetic field sensors, making it a promising application for spintronic oscillators. Next, the possibility of utilizing spintronic oscillators to realize Ising machines (IMs) was explored and demonstrated with numerical simulations. This was the first-time demonstration of spintronic oscillator-based Ising machines. The numerical simulation results show that spintronic oscillators are a promising device to realize ultra-fast Ising Machines able to solve complex combinatorial optimization problems on nano-second time scale.

The second part of the thesis extends on the idea of oscillator-based IMs, but using electronic oscillators. The potential of realizing highly reconfigurable oscillator-based IMs based on quasiperiodically modulated coupling was explored. The advantages and potential challenges associated with this approach were highlighted, and a proof-of-concept IM using CMOS ring oscillators was proposed and simulated. Finally, a completely new type of IMs based on bifurcations in a network of coupled Duffing oscillators was proposed and developed. This work highlights a new research direction based on using dynamical systems implemented with analog circuits to realize IMs.

Abstract [sv]

Oscillatorer har en mycket rik och komplex dynamik som ofta kan observeras i naturen. Dessa egenskaper inkluderar synkronisering, injektionslåsning, kaos, bifurkationer, etc. Hittills har tillämpningarna av elektroniska oscillatorer mestadels varit begränsade till kommunikationssystem. Under senare år har möjligheten att utnyttja oscillatorernas rika dynamik i okonventionella tillämpningar inklusive tidsbaserad informationsbehandling och för beräkningstillämpningar undersökts. I denna avhandling utforskas denna potential både med hjälp av nya spintroniska oscillatorer och etablerade elektroniska oscillatorer.

Den första delen av avhandlingen är inriktad på framväxande spintroniska oscillatorer, som har en rad attraktiva egenskaper, inklusive GHz-frekvenser, bred avstämbarhet och storlek i nano-skala. För att utforska potentialen hos dessa oscillatorer utvecklades en elektrisk modell för den lovande tre-terminals spin-Hall nano-oscillatorn. Modellen är baserad på makrospin-approximationen, som vanligtvis används för att beskriva den principiella funktionen av spintroniska oscillatorer, och den implementerades i Verilog-A. Dessutom verifierades modellen mot experimentella mätningar från litteraturen, vilket visar att modellen kan beskriva de viktigaste egenskaperna hos tre-terminala spin-Hall nano-oscillatorer. Därefter identifierades och utforskades två potentiella tillämpningar som kan dra nytta av de unika egenskaperna hos spintroniska oscillatorer. Först föreslogs ett magnetfälts-avkänningssystem, baserat på den breda frekvensavstämningen hos spintroniska oscillatorer som en funktion av externt applicerat magnetfält. Systemet är inspirerat av spänningsstyrda oscillatorer analog-till-digital-omvandlare och kan ge fördelar jämfört med andra tillvägagångssätt. Därefter undersöktes möjligheten att använda spintroniska oscillatorer för att realisera oscillator-baserade Ising-maskiner (IMs) och detta demonstrerades med simuleringar. IM är hårdvaruarkitekturer som specifikt inriktar sig på svåra kombinatoriska optimeringsproblem, som är utmanande att lösa på den konventionella von-Neumann arkitekturen.

Den andra delen av avhandlingen utvidgar idén om oscillator-baserade IM, men med hjälp av elektroniska oscillatorer. Potentialen med att realisera mycket konfigurerbara oscillator-IMs baserade på kvasiperiodiskt modulerad koppling undersöktes. Fördelarna och de potentiella utmaningarna med detta tillvägagångssätt lyftes fram, och en proof-of-concept IM med CMOS-ring oscillatorer föreslogs och simulerades. Slutligen föreslogs och utvecklades en ny typ av IM baserade på bifurkationer i ett nätverk av kopplade Duffing-oscillatorer.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. , p. xii, 107
Series
TRITA-EECS-AVL ; 2023:45
Keywords [en]
Spintronic Oscillator, Behavioural Modeling, Macrospin Approximation, Magnetic Field Sensor, Ising Machine, Duffing Oscillator, Kuramoto Model
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Information and Communication Technology
Identifiers
URN: urn:nbn:se:kth:diva-326756ISBN: 978-91-8040-592-8 (print)OAI: oai:DiVA.org:kth-326756DiVA, id: diva2:1756043
Public defence
2023-06-12, https://kth-se.zoom.us/j/64645889464, Sal C, Electrum, Kistagången 16, Kista, 13:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2016- 05980Swedish Research Council, 2022-02990
Note

QC 20230510

Available from: 2023-05-10 Created: 2023-05-10 Last updated: 2023-10-02Bibliographically approved
List of papers
1. Compact Macrospin-Based Model of Three-Terminal Spin-Hall Nano Oscillators
Open this publication in new window or tab >>Compact Macrospin-Based Model of Three-Terminal Spin-Hall Nano Oscillators
Show others...
2019 (English)In: IEEE transactions on magnetics, ISSN 0018-9464, E-ISSN 1941-0069, Vol. 55, no 10, article id 4003808Article in journal (Refereed) Published
Abstract [en]

Emerging spin-torque nano oscillators (STNOs) and spin-Hall nano oscillators (SHNOs) are potential candidates for microwave applications. Recent advances in three-terminal magnetic tunnel junction (MTJ)-based SHNOs opened the possibility to develop more reliable and well-controlled oscillators, thanks to individual spin Hall-driven precession excitation and read-out paths. To develop hybrid systems by integrating three-terminal SHNOs and CMOS circuits, an electrical model able to capture the analog characteristics of three-terminal SHNOs is needed. This model needs to be compatible with current electric design automation (EDA) tools. This work presents a comprehensive macrospin-based model of three-terminal SHNOs able to describe the dc operating point, frequency modulation, phase noise, and output power. Moreover, the effect of voltage-controlled magnetic anisotropy (VCMA) is included. The model shows good agreement with experimental measurements and could be used in developing hybrid three-terminal SHNO/CMOS systems.

Place, publisher, year, edition, pages
IEEE Press, 2019
Keywords
Compact model, magnetic tunnel junction (MTJ), spin-Hall nano oscillator (SHNO)
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-259715 (URN)10.1109/TMAG.2019.2925781 (DOI)000487191400001 ()2-s2.0-85077499904 (Scopus ID)
Funder
Swedish Research Council
Note

QC 20190930

Available from: 2019-09-20 Created: 2019-09-20 Last updated: 2024-03-15Bibliographically approved
2. A Magnetic Field-to-Digital Converter Employing a Spin-Torque Nano-Oscillator
Open this publication in new window or tab >>A Magnetic Field-to-Digital Converter Employing a Spin-Torque Nano-Oscillator
2020 (English)In: IEEE transactions on nanotechnology, ISSN 1536-125X, E-ISSN 1941-0085, Vol. 19, p. 565-570Article in journal (Refereed) Published
Abstract [en]

In this work, a novel magnetic field-to-digital converter based on emerging spin-torque nano-oscillators (STNOs) is proposed. The architecture is inspired by voltage controlled oscillator (VCO)-based analog-to-digital converters (ADCs) which have shown inherent first-order noise shaping of both quantization- and phase-noise without the need for feedback. In the proposed architecture, the STNO acts both as a magnetic field sensor and VCO. The architecture's performance is evaluated in terms of signal-to-noise and distortion ratio (SNDR) utilizing Verilog-AMS modeling, where a macrospin model fitted to experimental data is employed for accurate description of the STNO operation. The presented simulation results demonstrate the potential of the STNO-based magnetic field-to-digital converter architecture.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2020
Keywords
Magnetic field sensor, spin-torque nano-oscillator, spintronics, verilog
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-278813 (URN)10.1109/TNANO.2020.3007344 (DOI)000552969300002 ()2-s2.0-85089874550 (Scopus ID)
Funder
Swedish Research Council
Note

QC 20200909

Available from: 2020-07-27 Created: 2020-07-27 Last updated: 2024-03-18Bibliographically approved
3. Ultrafast Ising Machines using spin torque nano-oscillators
Open this publication in new window or tab >>Ultrafast Ising Machines using spin torque nano-oscillators
Show others...
2021 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 118, no 11, article id 112404Article in journal (Refereed) Published
Abstract [en]

Combinatorial optimization problems are known for being particularly hard to solve on traditional von Neumann architectures. This has led to the development of Ising Machines (IMs) based on quantum annealers and optical and electronic oscillators, demonstrating speed-ups compared to central processing unit (CPU) and graphics processing unit (GPU) algorithms. Spin torque nano-oscillators (STNOs) have shown GHz operating frequency, nanoscale size, and nanosecond turn-on time, which would allow their use in ultrafast oscillator-based IMs. Here, we show using numerical simulations based on STNO auto-oscillator theory that STNOs exhibit fundamental characteristics needed to realize IMs, including in-phase/out-of-phase synchronization and second harmonic injection locking phase binarization. Furthermore, we demonstrate numerically that large STNO network IMs can solve Max-Cut problems on nanosecond timescales.

Place, publisher, year, edition, pages
AIP Publishing, 2021
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-293024 (URN)10.1063/5.0041575 (DOI)000629823900001 ()2-s2.0-85102827932 (Scopus ID)
Note

QC 20210419

Available from: 2021-04-19 Created: 2021-04-19 Last updated: 2023-05-10Bibliographically approved
4. Highly reconfigurable oscillator-based Ising Machine through quasiperiodic modulation of coupling strength
Open this publication in new window or tab >>Highly reconfigurable oscillator-based Ising Machine through quasiperiodic modulation of coupling strength
2023 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 13, no 1, article id 4005Article in journal (Refereed) Published
Abstract [en]

Ising Machines (IMs) have the potential to outperform conventional Von-Neuman architectures in notoriously difficult optimization problems. Various IM implementations have been proposed based on quantum, optical, digital and analog CMOS, as well as emerging technologies. Networks of coupled electronic oscillators have recently been shown to exhibit characteristics required for implementing IMs. However, for this approach to successfully solve complex optimization problems, a highly reconfigurable implementation is needed. In this work, the possibility of implementing highly reconfigurable oscillator-based IMs is explored. An implementation based on quasiperiodically modulated coupling strength through a common medium is proposed and its potential is demonstrated through numerical simulations. Moreover, a proof-of-concept implementation based on CMOS coupled ring oscillators is proposed and its functionality is demonstrated. Simulation results show that our proposed architecture can consistently find the Max-Cut solution and demonstrate the potential to greatly simplify the physical implementation of highly reconfigurable oscillator-based IMs.

Place, publisher, year, edition, pages
Springer Nature, 2023
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-326743 (URN)10.1038/s41598-023-31155-0 (DOI)000989359600003 ()36899045 (PubMedID)2-s2.0-85149970759 (Scopus ID)
Funder
Swedish Research Council, 2016-05980KTH Royal Institute of TechnologySwedish Research Council, 2022-02990
Note

QC 20230510

Available from: 2023-05-09 Created: 2023-05-09 Last updated: 2023-07-06Bibliographically approved
5. Ising Machine Based on Bifurcations in a Network of Duffing Oscillators
Open this publication in new window or tab >>Ising Machine Based on Bifurcations in a Network of Duffing Oscillators
2023 (English)In: Proceedings: IEEE International Symposium on Circuits and Systems, Institute of Electrical and Electronics Engineers (IEEE) , 2023Conference paper, Published paper (Refereed)
Abstract [en]

Ising Machines have been extensively explored latelyfor developing new nonconventional computing architectures. Arecently proposed approach, based on simulating a dynamicalsystem exhibiting bifurcations, has shown promising performance. Inspired by this concept, we propose using bifurcationsin a network of coupled electrical Duffing oscillators to realize anIsing Machine. Numerical simulations of large Duffing oscillatornetworks, solving various Max-Cut problems, demonstrate thepotential of our proposed approach for realizing Ising Machinesbased on bifurcations. It also establishes a new direction towardsanalog Ising Machine architectures. 

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2023
Series
Proceedings - IEEE International Symposium on Circuits and Systems, ISSN 02714310
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-326744 (URN)10.1109/ISCAS46773.2023.10181810 (DOI)001038214601170 ()2-s2.0-85167726085 (Scopus ID)
Conference
56th IEEE International Symposium on Circuits and Systems, ISCAS 2023, Monterey, CA, USA, 21 May-25 May 2023
Funder
Swedish Research Council, 2016-05980Swedish Research Council, 2022-02990
Note

QC 20230831

Available from: 2023-05-09 Created: 2023-08-31 Last updated: 2023-10-02Bibliographically approved

Open Access in DiVA

fulltext(6331 kB)813 downloads
File information
File name FULLTEXT01.pdfFile size 6331 kBChecksum SHA-512
6072f9ffcad008a879f3f3b06fa310b1700b33653e009992e24d25643bfbfdf50ce1cc806620fbb70460698e997573bd5f5b5de0d9ca1f330ac2f7939c1ca9f7
Type fulltextMimetype application/pdf

Authority records

Albertsson, Dagur Ingi

Search in DiVA

By author/editor
Albertsson, Dagur Ingi
By organisation
Electronics and Embedded systems
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 814 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2736 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf