kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fully-convolutional networks for velocity-field predictions based on the wall heat flux in turbulent boundary layers
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics, Turbulent simulations laboratory.ORCID iD: 0000-0002-8589-1572
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics, Komplexa fluider och flöden.ORCID iD: 0000-0002-0906-3687
(Aerospace engineering research group, Universidad Carlos III de Madrid, Leganés, Spain)ORCID iD: 0000-0002-1673-9956
(Aerospace engineering research group, Universidad Carlos III de Madrid, Leganés, Spain)ORCID iD: 0000-0001-7342-4814
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Fully-convolutional neural networks (FCN) were proven to be effective for predicting the instantaneous state of a fully-developed turbulent flow at different wall-normal locations using quantities measured at the wall. In Guastoni et al. (2021), we focused on wall-shear-stress distributions as input, which are difficult to measure in experiments. In order to overcome this limitation, we introduce a model that can take as input the heat-flux field at the wall from a passive scalar. Four different Prandtl numbers Pr = ν/α = (1,2,4,6) are considered (where ν is the kinematic viscosity and α is the thermal diffusivity of the scalar quantity). A turbulent boundary layer is simulated since accurate heat-flux measurements can be performed in experimental settings, paving the way for the implementation of a non-intrusive sensing approach for the flow in practical applications. This is particularly important for closed-loop flow control, which requires an accurate representation of the state of the flow to compute the actuation.

Keywords [en]
turbulence simulation, turbulent boundary layers
National Category
Fluid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-326896OAI: oai:DiVA.org:kth-326896DiVA, id: diva2:1756843
Funder
EU, European Research Council, 2021-CoG-101043998, DEEPCONTROLSwedish e‐Science Research Center
Note

QC 20230517

Available from: 2023-05-15 Created: 2023-05-15 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Time, space and control: deep-learning applications to turbulent flows
Open this publication in new window or tab >>Time, space and control: deep-learning applications to turbulent flows
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Tid, rum och kontroll: djupinlärningsapplikationer för turbulenta flöden
Abstract [en]

In the present thesis, the application of deep learning and deep reinforcement learning to turbulent-flow simulations is investigated. Deep-learning models are trained to perform temporal and spatial predictions, while deep reinforcement learning is applied to a flow-control problem, namely the reduction of drag in an open channel flow. Long short-term memory (LSTM, Hochreiter & Schmidhuber 1997) networks and Koopman non-linear forcing (KNF) models are optimized to perform temporal predictions in two reduced-order-models of turbulence, namely the nine-equations model proposed by Moehlis et al. (2004) and a truncated proper orthogonal decomposition (POD) of a minimal channel flow (Jiménez & Moin 1991). In the first application, both models are able to produce accurate short-term predictions. Furthermore, the predicted system trajectories are statistically correct. KNF models outperform LSTM networks in short-term predictions, with a much lower training computational cost. In the second task, only LSTMs can be trained successfully, predicting trajectories that are statistically accurate. Spatial predictions are performed in two turbulent flows: an open channel flow and a boundary-layer flow. Fully-convolutional networks (FCNs) are used to predict two-dimensional velocity-fluctuation fields at a given wall-normal location using wall measurements (and vice versa). Thanks to the non-linear nature of these models, they provide a better reconstruction performance than optimal linear methods like extended POD (Borée 2003). Finally, we show the potential of deep reinforcement learning in discovering new control strategies for turbulent flows. By framing the fluid-dynamics problem as a multi-agent reinforcement-learning environment and by training the agents using a location-invariant deep deterministic policy-gradient (DDPG) algorithm, we are able to learn a control strategy that achieves a remarkable 30% drag reduction, improving over existing strategies by about 10 percentage points.

Abstract [sv]

I den förinställda avhandlingen undersöks tillämpningen av djupinlärning och djupförstärkningsinlärning på turbulenta flödessimuleringar. Modeller för djupinlärning tränas för att utföra tids- och rumsförutsägelser, medan djupförstärkningsinlärning tillämpas på ett flödeskontrollproblem, nämligen minskningen av motståndet i ett öppet kanalflöde. Long short-term memory (LSTM, Hochreiter & Schmidhuber 1997) nätverk och Koopman non-linear forcing (KNF) modeller optimeras för att utföratidsförutsägelser i två turbulensmodeller med reducerad ordning, nämligen nio-ekvationsmodellen som föreslagits av Moehlis et al. (2004) och en trunkerad proper orthogonal decomposition (POD) av ett minimalt kanalflöde (Jiménez & Moin 1991). I den första applikationen kan båda modellerna producera korrekta korttidsförutsägelser, dessutom är de förutsagda trajektorierna statistiskt korrekta. KNF-modeller överträffar LSTM-nätverk i kortsiktiga förutsägelser, med en mycket lägre utbildningsberäkningskostnad. I den andra uppgiften kan endast LSTM nätverken tränas framgångsrikt, med trajektorier som är statistiskt korrekta. Spatiala förutsägelser utförs i två turbulenta flöden, en öppen kanal flöde och en gränsskikt. Fully-convolutional networks (FCN) används för att förutsäga tvådimensionella hastighetsfluktuationsfält vid givet avstånd från väggen med hjälp av väggmätningar (och vice versa). Tack vare deras icke-linjär karaktär ger dessa modeller bättre rekonstruktionsprestanda än optimala linjära metoder som extended POD (Borée 2003). Slutligen visar vi potentialen med djup förstärkningsinlärning för att upptäcka nya kontrollstrategier i turbulenta flöden. Genom att inrama strömningsmekaniska problemet som en förstärknings-inlärningsmiljö med flera agenter och genom att träna agenterna med hjälp av en positionsinvariant deep deterministic policy gradient (DDPG) algoritm, kan vi lära oss en kontrollstrategi som uppnår en anmärkningsvärd 30% minskning av luftmotståndet, vilket jämfört med existerande strategier är en förbättring med cirka 10 procentenheter.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 342
Series
TRITA-SCI-FOU ; 2023:27
Keywords
turbulence, deep learning, deep reinforcement learning, flow control, turbulens, djupinlärning, djupförstärkningsinlärning, flödeskontroll
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-326961 (URN)978-91-8040-601-7 (ISBN)
Public defence
2023-06-12, F3, Lindstedtsvägen 26 & 28, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
EU, European Research Council, 2021-CoG-101043998, DEEPCONTROLSwedish e‐Science Research CenterKnut and Alice Wallenberg Foundation
Note

QC 230516

Available from: 2023-05-16 Created: 2023-05-15 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

fulltext(2208 kB)145 downloads
File information
File name FULLTEXT01.pdfFile size 2208 kBChecksum SHA-512
80487d08849b742bbfdedc0433fe7c227bc74996913c26dcd55a46f9d990ada1d71117749c152c6d2005c25fee079bea2ed4db2a507c8da87c42f63588f7adce
Type fulltextMimetype application/pdf

Authority records

Guastoni, LucaGeetha Balasubramanian, ArivazhaganAzizpour, HosseinVinuesa, Ricardo

Search in DiVA

By author/editor
Guastoni, LucaGeetha Balasubramanian, ArivazhaganGüemes, AlejandroIaniro, AndreaDiscetti, StefanoSchlatter, PhilippAzizpour, HosseinVinuesa, Ricardo
By organisation
Turbulent simulations laboratoryKomplexa fluider och flödenRobotics, Perception and Learning, RPLLinné Flow Center, FLOW
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar
Total: 145 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 311 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf