Open this publication in new window or tab >>Show others...
(English)In: Article, book review (Other academic) Submitted
Abstract [en]
Hydrogen delayed fracture, also known as hydrogen-induced cracking, is a type of brittle fracture that occurs due to the slow diffusion and accumulation of hydrogen atoms, leading todecreased ductility and eventual cracking under constant load. This paper presents an in-situobservation, using neutron imaging, of delayed crack propagation caused by hydrogen embrittlement in a high strength martensitic steel specimen. The experiments involved mechanicalloading of a single-edge-notch bend specimen while submerged in an electrolyte solution (H2O+ 3.5% NaCl) under cathodic polarization to facilitate hydrogen ingress. Neutron transmission images were obtained in-situ and used to monitor intermittent crack propagation wasrecorded over a period of 12 hours. The stress state at each crack configuration was extracted from a three-dimensional elastic-plastic finite element simulation, which was tailoredto match the quantitative information acquired from the neutron radiographs of the fractureprocess. To gain insight into the evolution of hydrogen concentration with crack propagation,a modeling scheme for stress-assisted hydrogen diffusion was employed. These simulationsprovided qualitative information on the relation between intermittent crack propagation andthe subsequent supply of hydrogen to the crack tip. Finally, a failure locus was constructedbased on the calculated hydrogen concentration levels and the experimentally determinedcrack growth resistance.
National Category
Other Materials Engineering
Identifiers
urn:nbn:se:kth:diva-326926 (URN)
Note
QC 20230516
2023-05-152023-05-152023-05-16Bibliographically approved