kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Impact of Quantitative and Qualitative Parameters on Stock Performance
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematical Statistics.
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematical Statistics.
2022 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Påverkan kvantitativa respektive kvalitativa parametrar har på aktiemarknadens utveckling (Swedish)
Abstract [en]

Stocks belonging to publicly traded companies is a topic which in society is mystified and by some considered to be an unpredictable phenomenon where you either make an economic loss or gain seemingly by chance. Despite this, there are numerous fields of work where the sole purpose is to predict the movement of stocks in order to maximize economic gain. The purpose of this report was to research whether or not these movements actually can be predicted by the usage of regression analysis.

A regression model was constructed where the response variable used was the rate of change of a certain stock over 30 days and numerous different qualitative and quantitative parameters were used as regressors. This full model was then evaluated and improved in order to refine its construction and results yielded in order to present the best possible model.

When researching and optimizing the model, it was found that several parameters turned out to be statistically significant for the model. The model itself did however come with some uncertainties in the form of a low R-squared value, meaning that despite the significance of said parameters, it contained a high amount of unrepresented variance.

Abstract [sv]

Aktier tillhörande publikt handlade bolag är i samhället ett mystifierat ämne varvid vissa ser det som ett oförutsägbart fenomen, som kan genera antingen vinst eller förlust, till synes av slumpen. Trots detta finns det flertalet områden vars främsta syfte är att förutspå aktiers prisrörelser med ändamålet att maximera ekonomisk vinning. Syftet med denna rapporten var att studera huruvida dessa prisrörelser faktiskt kan förutspås med hjälp av regressionsanalys.

En regressionsmodell skapades där rate of change för flertalet aktier under en period på 30 dagar användes som responsvariabel. Flertalet olika kvantitativa och kvalitativa parametrar för respektive aktie användes som regressorer. Den fullständiga modellen som byggde på all data utvärderades för att sedan förbättras, i syfte att förfina dess uppbyggnad och de resultat den genererade, för att skapa en så bra modell som möjligt. 

När modellen studerades och optimerades kunde det konstateras att flertalet parametrar var statistiskt signifikanta för modellen. Modellen hade dock osäkerheter i form av bland annat lågt R-kvadratvärde, vilket innebar att trots statistiskt signifikans i flertalet parametrar, kunde modellen inte förklara en stor del av förekommen varians.

Place, publisher, year, edition, pages
2022.
Series
TRITA-SCI-GRU ; 2022:288
Keywords [en]
Applied mathematics, regression analysis, financial markets, qualitative parameters, quantitative parameters
Keywords [sv]
Tillämpad matematik, regressionsanalys, finansiella marknader, kvalitativa parametrar, kvantitativa parametrar
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:kth:diva-326546OAI: oai:DiVA.org:kth-326546DiVA, id: diva2:1756992
Subject / course
Applied Mathematics and Industrial Economics
Educational program
Master of Science in Engineering - Industrial Engineering and Management
Supervisors
Examiners
Available from: 2023-05-15 Created: 2023-05-15 Last updated: 2023-05-15Bibliographically approved

Open Access in DiVA

fulltext(1071 kB)321 downloads
File information
File name FULLTEXT01.pdfFile size 1071 kBChecksum SHA-512
40c0cea9642a1f86635b25736a7e93a68e4f50c845d543984f442c2df11f452e76da34748df3d120d180b4e62708c15d473ef40957e6844baf60c9b64aa29174
Type fulltextMimetype application/pdf

By organisation
Mathematical Statistics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 322 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 319 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf