kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Self-assembly of RGD-functionalized recombinant spider silk protein into microspheres in physiological buffer and in the presence of hyaluronic acid
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.ORCID iD: 0000-0002-6696-9055
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.ORCID iD: 0000-0002-1981-3736
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.ORCID iD: 0000-0003-0140-419X
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Biomaterials made of self-assembling protein building blocks are widely explored for biomedical applications, for example as drug carriers, tissue engineering scaffolds, and functionalized coatings. It has previously been shown that a recombinant spider silk protein functionalized with a cell binding motif from fibronectin, FN-4RepCT (FN-silk), self-assembles into fibrillar structures at interfaces, i.e. membranes, fibers, or foams at liquid/air interfaces, and fibrillar coatings at liquid/solid interfaces. Recently, we observed that FN-silk also assembles into microspheres in the bulk of a physiological buffer (PBS) solution. Herein, we investigate the self-assembly process of FN-silk into microspheres in the bulk, and how its progression is affected by the presence of hyaluronic acid (HA), both in solution and in a cross-linked HA hydrogel. Moreover, we characterize the size, morphology, mesostructure and protein secondary structure of the FN-silk microspheres prepared in PBS and HA. Finally, we examine how the FN-silk microspheres can be used to mediate cell adhesion and spreading of human mesenchymal stem cells (hMSCs) during cell culture. These investigations contribute to our fundamental understanding of the self-assembly of silk protein into materials and demonstrate the use of silk microspheres as additives for cell culture applications.

Keywords [en]
recombinant spider silk, self-assembly, silk microspheres, hyaluronic acid, confocal microscopy, fluorescence microscopy, cryo-electron microscopy, cell culture
National Category
Biomaterials Science
Identifiers
URN: urn:nbn:se:kth:diva-327023OAI: oai:DiVA.org:kth-327023DiVA, id: diva2:1757651
Note

QC 20230522

Available from: 2023-05-17 Created: 2023-05-17 Last updated: 2023-05-22Bibliographically approved
In thesis
1. Hierarchical Assembly Investigations and Multiscale Characterization of Protein-based Materials: Insights from Whey Protein Nanofibrils and Recombinant Spider Silk Microspheres
Open this publication in new window or tab >>Hierarchical Assembly Investigations and Multiscale Characterization of Protein-based Materials: Insights from Whey Protein Nanofibrils and Recombinant Spider Silk Microspheres
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Protein-based materials, with their unique properties of combining high strength, while maintaining elasticity, and their inherent biocompatibility, hold immense potential for various applications. In order to harness these properties, we need to understand and control how protein building blocks come together to form hierarchically structured materials. Using critical thinking when combining different proteins may lead to advanced materials with synergistic effects that can tackle complex problems such as targeted drug delivery. This thesis presents an investigation into the behavior of some protein-based materials, specifically whey protein isolate nanofibrils, β-lactoglobulin peptide fragment assemblies, and recombinant spider silk microspheres.

In Paper I, the hierarchical assembly and packing behavior of whey protein nanofibrils were in situ investigated using a Liquid Bridge Induced Assembly setup and X-ray Scattering, along with Atomic Force Microscopy and Scanning Electron Microscopy. The results demonstrated that the alignment of straight and curved fibrils was affected by temperature and fibril size, providing insights into assembly dynamics for future material production.

In Paper II, the impact of nanoscale features of whey protein nanofibrils on the morphology of films was investigated. It was found that controlling fibril size and employing fast-drying protocols could manipulate macroscale features without sacrificing the functional properties of the nanofibrils.

In Paper III, the nanoscale morphology, molecular arrangement, and polymorphism of protein nanofibrils formed by a synthetic peptide fragment derived from β-lactoglobulin were examined. Β-lactoglobulin is the only nanofibril forming component in whey protein isolate. Results suggested that polymorphism stems from protofilament packing differences at the nanoscale, and a possible parallel steric zipper packing.

In Paper IV, the self-assembly behavior of a recombinant spider silk protein in physiological like buffer and with the addition of hyaluronic acid was explored. The self-assembled FN-silk microspheres demonstrated a fibrillar or porous mesostructure. 2D and 3D cell culture trials show that the microspheres could have potential applications in biomedicine.

Taken together, the acquired knowledge will contribute to our fundamental understanding of protein-based materials, especially those similar to PNF-based and recombinant spider silk-based materials and inform the design of improved and innovative materials in biomanufacturing, such as functional textiles and surface biofunctionalization.

Abstract [sv]

Proteinbaserade material med sin unika kombination av styrka, elasticitet och biokompatibilitet har enorm potential för tillämpningar inom olika branscher. För att utnyttja dessa egenskaper måste vi förstå och kontrollera hur proteinbyggstenar sammanfogas för att bilda hierarkiskt strukturerade material. Samtidigt kan kombinationen av olika proteiner med kritiskt tänkande leda till avancerade material med synergistiska effekter som kan ta itu med komplexa problem som in vitro-vävnadsutveckling. Denna avhandling presenterar en undersökning av beteendet hos vissa proteinbaserade material, specifikt vassleproteinisolat (WPI) proteinnanofibriller (PNF), β-laktoglobulinprotein peptidfragmentförsamlingar och rekombinerade spindelsilkesmikrosfärer.

 

I Artikel I undersöktes den hierarkiska sammansättningen och packningsbeteendet hos WPI-nanofibrer med hjälp av en Liquid Bridge Induced Assembly (LBIA) uppställning. Resultaten visade att inriktningen av raka och böjda fibrer påverkades av temperatur och storlek vilket ger insikter i sammansättningsdynamiken för framtida materialproduktion. 

I Artikel II studerades effekten av WPI PNFs nanoskaliga funktioner på filmernas morfologi. Det visade sig att kontroll av fibrilstorlek och användning av snabbtorkningsprotokoll kunde manipulera makroskaliga funktioner utan att offra de funktionella egenskaperna hos PNF:erna.

I Artikel III undersöktes nanoskalig morfologi, molekylärt arrangemang och polymorfism hos PNF:er bildade av ett syntetiskt peptidfragment härstammande från β-laktoglobulinprotein (β-LG11–20). Resultaten tyder på att polymorfismen härrör från protofilament packningsdifferenser på nanoskalan. 

I Artikel IV utforskades självmonteringsbeteendet hos FN-silke i fysiologisk liknande buffert och i hyaluronsyralösning. FN-silkesmikrosfärerna visade en fibrillär eller porös mesostruktur, med potentiella tillämpningar inom optimering av cellkulturer och läkemedelsleverans.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2023. p. 111
Series
TRITA-CBH-FOU ; 2023:26
Keywords
Hierarchical Assembly, Protein-based materials, Whey Protein Nanofibrils, β-Lactoglobulin, Recombinant Spider Silk, Microspheres, Biomedical Applications, Surface Biofunctionalization, Hierarkisk montering, Proteinbaserade material, Vassleprotein nanofibriller, β-Laktoglobulin, Rekombinant spindelsilke Mikrosfärer, Biomedicinska tillämpningar, Ytbiokonjugering
National Category
Biomaterials Science
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-327026 (URN)978-91-8040-624-6 (ISBN)
Public defence
2023-06-15, E3, Osquars backe 2, KTH Main Campus, Zoom: https://kth-se.zoom.us/j/69776330962, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 2023-05-17

Available from: 2023-05-17 Created: 2023-05-17 Last updated: 2023-06-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Ornithopoulou, EiriniÅstrand, CarolinaCrouzier, ThomasHedhammar, My

Search in DiVA

By author/editor
Ornithopoulou, EiriniÅstrand, CarolinaCrouzier, ThomasHedhammar, My
By organisation
Protein TechnologyKTHGlycoscience
Biomaterials Science

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 147 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf