kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Timescales for convergence in all-atom molecular dynamics simulations of hydrated amorphous xylan
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.ORCID iD: 0000-0003-1777-9834
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0002-0231-3970
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.ORCID iD: 0000-0001-6732-2571
2022 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 286, p. 119263-119263, article id 119263Article in journal (Refereed) Published
Abstract [en]

Atomistic molecular dynamics simulation is an important complement to experimental techniques for investi­gating properties of hydrated carbohydrate polymers at the molecular scale. A critical problem is to determinewhether or not a simulation has converged to thermal equilibrium before data collection can begin. In this work,simulations of xylan oligomers starting from random configurations at different levels of hydration are per­formed. The simulations show clear evidence of phase separation into water-rich and polymer-rich phases athigher hydration, in spite of standard indicators of equilibrium, such as density and energy, remaining constant.Using instead a set of parameters that are coupled to the structural and dynamical heterogeneity of the system, itis shown that simulation times on the order of one microsecond are needed to reach an equilibrated state.Moreover, qualitative similarities in the temporal evolution of these parameters suggest significant interplaybetween the structure and both polymer and water dynamics.

Place, publisher, year, edition, pages
Elsevier BV , 2022. Vol. 286, p. 119263-119263, article id 119263
Keywords [en]
Biomaterials Polysaccharide structure-dynamics Aggregation Phase separation
National Category
Engineering and Technology
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-327115DOI: 10.1016/j.carbpol.2022.119263ISI: 000791295400008PubMedID: 35337496Scopus ID: 2-s2.0-85125459491OAI: oai:DiVA.org:kth-327115DiVA, id: diva2:1757918
Funder
Swedish Research Council, CGIA63646Knut and Alice Wallenberg Foundation
Note

QC 20230522

Available from: 2023-05-19 Created: 2023-05-19 Last updated: 2023-06-08Bibliographically approved
In thesis
1. Structure and Dynamics of Hydrated Biopolymers
Open this publication in new window or tab >>Structure and Dynamics of Hydrated Biopolymers
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Hydrated polysaccharide systems primarily using xylans along with mutans and alternans were studied using long atomistic simulations over a few microseconds to analyse structure-function relationships and nanoscale interactions with moisture. The influence of various structural and chemical factors such as alignment, nature of glycosidic linkage, effect of moisture / chemical substitutions was explored with a focus on structure-dynamics correlations to aid in the effective functionalisation of biomaterials for the development of a green, circular bioeconomy. The effect of initial geometry in terms of alignment of the xylan chains was observed to affect xylan chain extension and water dynamics significantly. Xylan interaction with moisture studied at high and low moisture contents showed compression along with structural locking, and evolution into segregated water-rich and polymer-rich phases respectively. The effect of chemical heterogeneity in terms of substitutions appeared to improve xylan dispersion in water resulting in faster dynamics for substituted residues with reference to unsubstituted residues along a given polymer chain. In addition, significant correlations between local hydration and polymer dynamics / structure in terms of relaxation times and order parameters was observed across differently substituted hydrated xylan systems, such that the polymer dynamics could be expressed as a local hydration water dependent component and a second partially stochastic component. In addition, the molecular structure of mixed linkage (1,3 and 1,6) as well as 1,3 linked glucans elucidated the effect of the nature of glycosidic linkage on the molecular structure of glucan oligosaccharides. A combination of glucan linkages and the ratio of different conformation states of the hydroxymethyl dihedral angle was observed to yield linear, twisted and extended structures in mutans, or helical coils of varying pitch sizes in alternans. Further modeling of structure-dynamics dependencies in hydrated xylan systems and analysis of the effect of alignment / chemical substitutions at the nanoscale is to be correlated with scattering or related experimental techniques in the future to understand the dynamics of hydrated xylan aggregates in typically aqueous solutions at varying intermediate length / timescales. In addition, the methodologies derived in this work to identify atom-specific, temporally sensitive, structural / dynamical parameters for analysing structural / dynamical variations at the nanoscale can be extended to study other hydrated biopolymeric systems. The role of substitutions, involving its polar nature and interactions with other xylans, can be extended to neutral groups such as arabinose sugars to broaden knowledge in carbohydrate science as well as being analysed further to improve effective functionalisation for tailoring physical properties influencing phenomena like aggregation / dispersion.

Abstract [sv]

Hydrerade polysackaridsystem som primärt använde xylaner, mutaner och alternaner studerades med hjälp av långa atomistiska simuleringar under några mikrosekunder för att analysera struktur-funktionsförhållanden och interaktioner med fukt i nanoskala. Inverkan av olika strukturella och kemiska faktorer såsom placering, karaktären av glykosidbindning, effekten avfukt/kemiska substitutioner undersöktes med fokus på struktur-dynamiska korrelationer för att hjälpa till med en effektiv funktionalisering av biomaterial för utvecklingen av en grön, cirkulär bioekonomi. Effekten av initial geometri i termer av placering av xylan-kedjorna observerades påverka xylan-kedjeförlängningen och vattendynamiken signifikant. Xylaninteraktionen medfukt studerades vid höga och låga fukthalter och visade kompression tillsammans med strukturell låsning och utveckling till segregerade vattenrika och polymerrika faser respektive. Effekten av kemisk heterogenitet i termer av substitutioner verkade förbättra dispersionen av xylan i vatten vilket resulterade i snabbare dynamik för substituerade delar jämfört med osubstituerade delar längs en given polymerkedja. Dessutom observerades signifikanta korrelationer mellan lokal hydratisering och polymerdynamik/struktur i termer av relaxationstider och ordningsparametrar över olika substituerade hydratiserade xylansystem, så att polymerdynamiken kunde uttryckas som en lokal hydreringsvattenberoende komponent och en andra delvis stokastisk komponent. Dessutom klargjorde den molekylära strukturen av blandad koppling (1,3 och 1,6) såväl som 1,3 länkade glukaner effekten av glykosidkopplingens natur på molekylstrukturen hos glukanoligosackarider. En kombination av glukanbindningar och förhållandet mellan olika konformationstillstånd för den hydroximetyldiedriska vinkeln observerades i linjära, vridna och utsträckta strukturer som i mutaner, eller som spiralformade spolar med varierande stigningsstorlekar i alternaner. Ytterligare modellering av struktur-dynamiska beroenden i hydratiserade xylansystem och analys av effekten av inriktning/kemiska substitutioner på nanoskala ska korreleras med spridning av relaterade experimentella tekniker i framtiden för att förstå dynamiken hos hydratiserade xylanaggregat i typiskt vattenhaltiga lösningar vid varierande medellängd /tidsskalor. Dessutom kan de metoder som härrör från detta arbete för att identifiera atomspecifika, tidsmässigt känsliga, strukturella/dynamiska parametrar för analys av strukturella/dynamiska variationer på nanoskala, utvidgas till att studera andra hydratiserade biopolymera system. Substitutionernas roll, som involverar dess polära natur och interaktioner med andra xylaner, kan utvidgas till neutrala grupper som arabinossocker för att bredda kunskapen inom kolhydratvetenskap samt analyseras ytterligare för att förbättra effektiv funktionalisering för att skräddarsy fysiska egenskaper som påverkar fenomen som aggregering / dispersion.

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2023. p. 121 pages : 87 pages (Summary) + 34 pages(2 appended papers)
Series
TRITA-CBH-FOU ; 2023:28
Keywords
Hydrated Polysaccharides, Molecular Dynamics Simulations, Structure-Function Properties, Convergence of Equilibrium Timescales, Chemical Heterogeneity, Hydrerade polysackarider, molekylära dynamiksimuleringar, struktur- funktionsegenskaper, konvergens av jämviktstidskalor, kemisk heterogenitet
National Category
Engineering and Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-327198 (URN)978-91-8040-627-7 (ISBN)
Presentation
2023-08-25, L52, Drottning Kristinas väg 30, Stockholm, Sweden, 10:00 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg Foundation, CGIA 63646
Note

QC 2023-05-22

Available from: 2023-05-22 Created: 2023-05-22 Last updated: 2023-08-24Bibliographically approved

Open Access in DiVA

fulltext(2443 kB)101 downloads
File information
File name FULLTEXT01.pdfFile size 2443 kBChecksum SHA-512
2e5ce7febab6a6de9029168cda59e77055153947cf4526e945ac23383635a286193426c5031e4d949e73dec06a97beabd87058107d0996b332061dea872c143a
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Ramamohan, PoornimaFuro, IstvanWohlert, Jakob

Search in DiVA

By author/editor
Ramamohan, PoornimaFuro, IstvanWohlert, Jakob
By organisation
Wallenberg Wood Science CenterFibre- and Polymer TechnologyApplied Physical Chemistry
In the same journal
Carbohydrate Polymers
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 101 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 216 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf