kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Distributed Control for Spatio-Temporally Constrained Systems
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control).ORCID iD: 0000-0001-9694-2569
2023 (English)Licentiate thesis, monograph (Other academic)
Abstract [en]

In this thesis, we develop methods leading towards the distributed control of spatio-temporally constrained systems. Overall, we focus on two different approaches: a model predictive control approach and an approach based on ensuring set-invariance via control barrier functions. Developing a distributed control framework for spatio-temporally constrained systems is challenging since multiple subsystems are interconnected via time-varying state constraints. Often, such constraints are only implicitly given as logic formulas, for example in Signal Temporal Logic (STL).

Our approach to dealing with spatio-temporal constraints is as follows. We aim at combining the computational efficiency of low-level feedback controllers with planning algorithms. Low-level feedback controllers shall ensure the satisfaction of parts of spatio-temporal constraints such as coupling state constraints or short term time-constraints. In contrast, planning algorithms account for those parts that require computationally intense planning operations. Powerful low-level controllers can simplify the planning task significantly. For this reason, the focus of this thesis is on the development of low level feedback controllers. 

In the first part, we focus on handling coupling state constraints using a model predictive control (MPC) approach. Commonly, the distributed handling of coupling state constraints requires a sequential or iterative MPC scheme which however is computationally time-intense. We address this issue by employing consistency constraints to develop a parallelized distributed model predictive controller (DMPC). By using consistency constraints, each subsystem guarantees to its neighbors that its states stay within a particular neighborhood around a reference trajectory. Furthermore, we propose extensions to robust and iterative schemes. Building up on this, also systems with bounded dynamic couplings can be controlled.

In the second part, we focus on methods for ensuring set-invariance. In particular, we focus on control barrier functions (CBF). We show how spatio-temporal constraints that comprise disjunctions (logic OR) can be encoded in non-smooth time-varying control barrier functions and how subgradients can be used to synthesize an efficient gradient-based controller. For these results, controllability assumptions must be invoked. To extend the results to systems with weaker controllability properties, we investigate the connection between controllability properties and the construction of CBFs. As a result, we propose a construction method for CBFs based on finite horizon predictions. The constructed CBF exhibits favorable properties for the extension of the previous results on encoding spatio-temporal constraints in CBFs to systems with weaker controllability properties. At last, we investigate with a case study how set-invariance methods can be used to implicitly coordinate systems subject to coupled state constraints. Our proposed method is fully decentralized and subsystems coordinate themselves purely via their actions and the adjustment of their individual constraints.

In the end, we draw a conclusion and outline how the presented results contribute to the development of a distributed control framework for spatio-temporally constrained systems.

Abstract [sv]

I den här avhandlingen utvecklar vi metoder som leder till distribuerad styrning av tillstånds-temporalt begränsade system. Vi följer två olika tillvägagångssätt: å ena sidan en modellprediktiv styrning och å andra sidan ett tillvägagångssätt som bygger på att säkerställa invarians i mängden via kontrollbarriärfunktioner. Det är en utmaning att utveckla ett ramverk för distribuerad styrning för tillstånds-temporalt begränsade system, eftersom flera delsystem är sammankopplade via sina tillståndsbegränsningar som varierar över tiden. Ofta ges sådana begränsningar endast implicit som logiska formler, till exempel i Signal Temporal Logic (STL). 

Vår metod för att hantera tillstånds- och tidsmässiga begränsningar är följande. Vi strävar efter att kombinera beräkningseffektiviteten hos återkopplingsregulatorer på låg nivå med planeringsalgoritmer. Återkopplingsregulatorer på låg nivå skall säkerställa att delar av de tillstånds- och tidsmässiga begränsningarna uppfylls, t.ex. sammankopplande tillståndsbegränsningar eller kortsiktiga tidsbegränsningar, medan planeringsalgoritmerna tar hänsyn till de delar som kräver beräkningsintensiva planeringsoperationer. Kraftfulla styrsystem på låg nivå kan förenkla planeringsuppgiften avsevärt. Därför fokuserar vi i denna avhandlingen på utvecklingen av återkopplingsregulatorer på låg nivå. 

I den första delen fokuserar vi på att hantera sammankopplande tillståndsbegränsningar för distribuerade system med hjälp av en modell prediktiv styrning (MPC). Vanligtvis kräver den distribuerade hanteringen av kopplingsbegränsningar ett sekventiellt eller iterativt MPC-system som dock är tidskrävande. Därför utvecklar vi en parallelliserad distribuerad modell prediktiv styrning (DMPC) baserad på konsistensbegränsningar. Därigenom garanterar ett delsystem till sina grannar att det håller sig inom ett visst område runt en referensbana. Den generiska formuleringen av vårt DMPC-system möjliggör flera realiseringar. En särskild realisering föreslås. Dessutom utvecklas utvidgningar till ett robust och iterativt system samt ett DMPC-system för system med begränsade dynamiska kopplingar.

I den andra delen fokuserar vi på metoder för att säkerställa invariansen av mängder. Vi fokuserar särskilt på kontrollbarriärfunktioner (CBF). Vi visar hur tillstånds- och tidsmässiga begränsningar kan inkodas i icke-glatta tidsvarierande kontrollbarriärfunktioner och hur subgradienter kan användas för att konstruera en effektiv gradientbaserad styrning. För dessa resultat måste antaganden om kontrollerbarhet åberopas. För att utvidga detta resultat till system med svagare kontrollerbarhetsegenskaper undersöker vi kopplingen mellan dynamiska systems kontrollerbarhetsegenskaper och konstruktionen av en CBF. Som ett resultat av detta föreslår vi en konstruktionsmetod för CBF:er som bygger på förutsägelser för ändliga horisonter. Den konstruerade CBF:n uppvisar gynnsamma egenskaper för att utvidga det tidigare resultatet om kodning av rums-temporala begränsningar i CBF:er till system med svagare kontrollerbarhetsegenskaper. Slutligen undersöker vi med hjälp av en fallstudie hur metoder för att säkerställa invariansen av mängder kan användas för att implicit samordna system som är kopplade via tillståndsbegränsningar. Vår föreslagna metod är helt decentraliserad och delsystemen samordnar sig själva endast via sina handlingar och justeringen av sina individuella begränsningar.

Slutligen drar vi en slutsats och beskriver hur de presenterade resultaten bidrar till utvecklingen av ett ramverk för distribuerad styrning av tillstånds- och tidsmässigt begränsade system.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. , p. 181
Series
TRITA-EECS-AVL ; 2023:52
Keywords [en]
distributed model predictive control, control barrier functions, spatio-temporal constraints, constrained control, multiagent systems
Keywords [sv]
distribuerad modell prediktiv styrning, kontrollbarriärfunktion, tillstånds-temporala begränsningar, begränsade system, multiagentsystem
National Category
Control Engineering
Identifiers
URN: urn:nbn:se:kth:diva-327126ISBN: 978-91-8040-619-2 (print)OAI: oai:DiVA.org:kth-327126DiVA, id: diva2:1757956
Presentation
2023-06-08, https://kth-se.zoom.us/j/64558638914, Harry Nyquist, Malvinas väg 10, Stockholm, 15:00 (English)
Opponent
Supervisors
Note

QC 20230520

Available from: 2023-05-20 Created: 2023-05-19 Last updated: 2024-01-02Bibliographically approved

Open Access in DiVA

fulltext(39467 kB)635 downloads
File information
File name FULLTEXT01.pdfFile size 39467 kBChecksum SHA-512
aac632710c5617c97fd1cd951c88f68050ec17d464a5a5f889fc067e69ccbb24ae77c27c880163fa9f8204772d02ccec6e1d16a0c71428a2be6abdf33310786b
Type fulltextMimetype application/pdf

Authority records

Wiltz, Adrian

Search in DiVA

By author/editor
Wiltz, Adrian
By organisation
Decision and Control Systems (Automatic Control)
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 636 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 818 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf