kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Framework for Learning Behavior Trees in Collaborative Robotic Applications
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL. ABB Corporate Research, Västerås, Sweden.ORCID iD: 0000-0002-6119-6399
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL. ABB Robotics, Västerås, Sweden.ORCID iD: 0000-0003-0312-8811
ABB Corporate Research, Västerås, Sweden.
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0003-2078-8854
(English)Manuscript (preprint) (Other academic)
Abstract [en]

In modern industrial collaborative robotic applications, it is desirable to create robot programs automatically,intuitively, and time-efficiently. Moreover, robots need to becontrolled by reactive policies to face the unpredictability ofthe environment they operate in. In this paper we proposea framework that combines a method that learns BehaviorTrees (BTs) from demonstration with a method that evolvesthem with Genetic Programming (GP) for collaborative roboticapplications. The main contribution of this paper is to show thatby combining the two learning methods we obtain a method thatallows non-expert users to semi-automatically, time-efficiently,and interactively generate BTs. We validate the framework witha series of manipulation experiments. The BT is fully learnt insimulation and then transferred to a real collaborative robot.

Keywords [en]
Behavior Trees, Genetic Programming, Learning from Demonstration, Collaborative Robotics
National Category
Robotics and automation
Identifiers
URN: urn:nbn:se:kth:diva-327202OAI: oai:DiVA.org:kth-327202DiVA, id: diva2:1758298
Funder
Swedish Foundation for Strategic ResearchKnut and Alice Wallenberg Foundation
Note

Submitted to the IEEE for possible publication

QC 20230525

Available from: 2023-05-22 Created: 2023-05-22 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Learning Behavior Trees for Collaborative Robotics
Open this publication in new window or tab >>Learning Behavior Trees for Collaborative Robotics
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis aims to address the challenge of generating task plans for robots in industry-relevant scenarios. With the increase in small-batch production, companies require robots to be reprogrammed frequently for new tasks. However, maintaining a team of operators with specific programming skills is only cost-efficient for large-scale production. The increase in automation targets companies where humans share their working environment with robots, expanding the scope of manufacturing applications. To achieve that, robots need to be controlled by task plans, which sequence and optimize the execution of actions. This thesis focuses on generating task plans that are reactive, transparent and explainable, modular, and automatically synthesized. These task plans improve the robot’s autonomy, fault-tolerance, and robustness. Furthermore, such task plans facilitate the collaboration with humans, enabling intuitive representations of the plan and the possibility for humans to prompt instructions at run-time to modify the robot’s behavior. Lastly, autonomous generation decreases the programming skills required for the operator to program a robot, and optimizes the task plan. This thesis discusses the use of Behavior Trees (BTs) as policy representations for robotic task plans. It compares the modularity of BTs and Finite State Machines (FSMs) and concludes that BTs are more effective for industrial scenarios. This thesis also explores the automatic and intuitive generation of BTs using Genetic Programming and Learning from Demonstration methods, respectively. The proposed methods aim to time-efficiently evolve BTs for mobile manipulation tasks and allow non-expert users to intuitively teach robots manipulation tasks. This thesis highlights the importance of user experience in task solving and how it can benefit evolutionary algorithms. Finally, it proposes the use of previously learned BTs from demonstration to intervene in the unsupervised learning process.

Abstract [sv]

Den här avhandlingen syftar till att ta itu med utmaningen att generera uppgiftsplaner för robotar i industriella scenarier. Med ökningen av småskalig produktion kräver företag att robotar omprogrammeras frekvent för nya uppgifter. Att upprätthålla en grupp operatörer med specifika programmeringsfärdigheter är dock endast kostnadseffektivt för storskalig produktion. Ökningen av automation riktar sig till företag där människor delar sin arbetsmiljö med robotar och utökar omfattningen av tillverkningsapplikationer. För att uppnå detta måste robotar styras av uppgiftsplaner som sekvenserar och optimerar utförandet av åtgärder. Denna avhandling fokuserar på att generera uppgiftsplaner som är reaktiva, transparenta och förklarbara, modulära och automatiskt syntetiserade. Dessa uppgiftsplaner förbättrar robotens autonomi, feltolerans och robusthet. Dessutom underlättar sådana uppgiftsplaner samarbetet med människor genom att möjliggöra intuitiva representationer av planen och möjligheten för människor att ge instruktioner vid körningstid för att ändra robotens beteende. Slutligen minskar autonom generering programmeringsfärdigheterna som krävs för att operatören ska kunna programmera en robot och optimerar uppgiftsplanen. Denna avhandling diskuterar användningen av beteendeträd (BTs) som policyrepresentationer för robotiska uppgiftsplaner. Den jämför moduleringen av BT och deterministiska tillståndsmaskiner (FSMs) och drar slutsatsen att BTs är mer effektiva för industriella scenarier. Denna avhandling utforskar också den automatiska och intuitiva generationen av BTs med hjälp av genetisk programmering och lärande från demonstrationsmetoder, respektive. De föreslagna metoderna syftar till att tidsmässigt utveckla BTs för mobila manipulationuppgifter och tillåta icke-experter att intuitivt lära robotar manipulationsuppgifter. Denna avhandling belyser vikten av användarupplevelsen i uppgiftslösning och hur den kan gynna evolutionära algoritmer. Slutligen föreslår den användningen av tidigare inlärda BTs från demonstration för att ingripa i den oövervakade inlärningsprocessen.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. xi, 127
Series
TRITA-EECS-AVL ; 2023:46
Keywords
Collaborative Robotics, Behavior Trees
National Category
Robotics and automation
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-327210 (URN)978-91-8040-594-2 (ISBN)
Public defence
2023-06-12, https://kth-se.zoom.us/j/64592198901, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20230523

Available from: 2023-05-23 Created: 2023-05-22 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

fulltext(2078 kB)160 downloads
File information
File name FULLTEXT01.pdfFile size 2078 kBChecksum SHA-512
f37da5cc88a440364813bcb80f46ad83fa8d25b5587d2c5de1d06085e8740a4134c230e77b853849c026e1f4f3bc11187c2016039306d9ed074d25c18d485e3e
Type fulltextMimetype application/pdf

Authority records

Iovino, MatteoStyrud, JonathanSmith, Christian

Search in DiVA

By author/editor
Iovino, MatteoStyrud, JonathanSmith, Christian
By organisation
Robotics, Perception and Learning, RPL
Robotics and automation

Search outside of DiVA

GoogleGoogle Scholar
Total: 160 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 192 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf