kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bifunctional ADAPTs: Opportunity for serological Half-life extension and Targeted therapy
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. (Proteintechnology)ORCID iD: 0000-0001-7069-7294
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Small engineered scaffold proteins (ESPs) gain more and more popularity as biological drugs, due to their specificity and applicability in diagnostics and therapy. Thanks to their high stability, low immunogenicity and low production cost, they present themselves as a promising alternative to the market-leading antibodies. However, their relatively small size poses the risk of fast blood clearance, a circumstance advantageous for imaging purposes but a disadvantage in a therapeutic setting.

This thesis has focused on introducing bifunctionality, the ability of the same engineered scaffold protein to exert more than one function, by applying different engineering approaches. Therefore, a new combinatorial protein library based on ABD-derived affinity proteins (ADAPTs) was generated, originating from a bacterial albumin-binding domain. From this library, it was possible to achieve protein modules with the ability to simultaneously bind to its intended target as well as to human serum albumin (HSA), a feature that has been shown to increase the binder’s half-life in the body. Specific binding modules were achieved by performing phage display selections towards the targets Tumor necrosis factor alpha (TNF⍺) and Interleukin-17c (IL-17c), both proinflammatory cytokines involved in many different inflammatory diseases and therefore interesting targets for therapeutic applications. The selection output was analyzed through sequencing and promising candidates were cloned and produced in Escherichia coli (E. coli), followed by a detailed characterization of each candidate including target binding, stability and their oligomeric state using methods like Surface Plasmon Resonance (SPR), Circular Dichroism (CD) and Size Exclusion Chromatography (SEC). It was possible to generate binders that passed all characterization criteria, most importantly showing simultaneous bispecificity to either TNF⍺ or IL-17c in combination with albumin. Each binder was then examined for their usefulness as a real therapeutic by successfully evaluating its ability to block the interaction of the cytokine and its specific receptor in vitro. These newly developed protein binders, showing high affinity towards their targets as well as keeping their initial binding to HSA, present another possibility to combine the advantages of small engineered scaffold proteins with those of typical larger proteins, allowing for more convenient production in bacteria leading to lower production costs and making them ideal candidates for future therapeutics.

Furthermore, a previously developed ADAPT targeting the human epidermal growth factor receptor 2 (HER2) was genetically fused to an improved Horseradish Peroxidase (HRP) variant, thereby combining the idea of tumor-targeted therapy through the ADAPT with the utilization of HRP to enzymatically catalyze the prodrug IAA into its active form. After proving these new fusion proteins have similar binding kinetics to the target, as well as comparable enzymatic activities, as their free counterpart, the cytotoxic effects were put to the test in vitro. Hereby, the variants showed to benefit immensely through the addition of an ADAPT by being selectively effective only on HER2-positive cells. The evident advantage of these fusion proteins and their competency to be functionally produced in E. coli as well as the possibility to avoid an additional step of conjugation or coupling of affinity proteins to cytotoxic payloads, makes this approach a promising alternative for current procedures and another reason why ESPs are on the rise.

Abstract [sv]

Scaffoldproteiner, proteindomäner som är mindre till storleken, växer i popularitet som biologiska läkemedel tack vare deras specificitet och applicerbarhet inom både diagnostik och terapi. Detta, i kombination med deras stabilitet, låga immunogenicitet och låga produktionskostnad gör dem till lovande alternativ till nuvarande marknadsledande antikropparna. Att de är mindre till storleken medför dock en potentiell risk för kortare cirkulationstid i blodomloppet. Som egenskap kan detta ändå vara till fördel i diagnostisk visualisering, men till nackdel för terapeutiska ändamål.

Denna avhandling har kretsat kring att utveckla dessa proteindomäner med målet att öka deras funktionalitet och därför skapades ett nytt kombinatoriskt proteinbibliotek baserat på ADAPT (ABD-derived affinity protein), som härstammar från en bakteriell albuminbindande domän. Från detta bibliotek var det möjligt att generera affinitetsproteiner som innehar förmågan att simultant binda till avsedda målprotein samt till humant serumalbumin (HSA), en egenskap som har visats öka bindarens halveringstid i kroppen. Specifika proteindomäner identifierades genom att utföra selektioner med fagdisplay mot tumörnekrosfaktor alfa (TNFa) och interleukin 17c (IL-17c); proinflammatoriska cytokiner involverade i ett stort antal olika inflammatoriska sjukdomar vilket gör dem intressanta som mål inom terapeutiska tillämpningar. Erhållna selektionskandidater har analyserats genom sekvensering och varianter som ansågs lovande klonades och producerades i Escherichia coli (E. coli), följt av en detaljerad utvärdering av varje kandidats individuella bindning till deras specifika målprotein, karakterisering av deras stabilitet såväl som deras oligomera tillstånd med hjälp av metoderna Surface Plasmon Resonance (SPR), Circular Dichroism (CD) och Size Exclusion Chromatography (SEC). Det var möjligt att generera bindare som uppfyllde samtliga karakteriseringskriterier, och som påvisade simultan bindning till TNFa eller IL-17c i kombination med albumin. Vidare undersöktes varje bindares förmåga att blockera respektive cytokins interaktion med dess specifika receptor in vitro för att utvärdera deras potentiella användbarhet som läkemedel. Dessa nyutvecklade proteinbindare, som uppvisar hög affinitet till sitt målprotein samt bibehåller sin naturliga bindning till HSA, utgör en ny möjlighet att kunna kombinera fördelarna hos mindre proteindomäner med de fördelar som typiskt tillhör större proteiner. Detta möjliggör en behändig och kostnadseffektiv produktion i bakterier vilket gör dem till ideala kandidater för framtida läkemedel.

Vidare har en tidigare utvecklad ADAPT med specifik bindning till målproteinet HER2 (human epidermal growth factor receptor 2) genetiskt fusionerats med en förbättrad variant av enzymet HRP (horseradish peroxidase). Fusionsproteinet kombinerar målsökande tumörterapi genom ADAPT med användningen av HRP för att enzymatisk katalysera det inaktiva substratet IAA till dess aktiva form som cellgift. Efter att ha demonstrerat att dessa nya fusionsproteiner har liknande bindningskinetik till målproteinet samt jämförbar enzymatisk aktivitet som HRP allena, testades de cytotoxiska effekterna in vitro. Eftersom fusionsproteinerna endast verkade mot HER2-positiva celler påvisades fördelen med en genetisk fusion av enzymet till en HER2-bindande ADAPT. Denna tydliga fördel hos fusionsproteiner, samt att de kan produceras som funktionella enheter direkt i E. coli, innebär att det extra steget att konjugera eller koppla cytotoxiska substanser till affinitetsproteinet kan undvikas. Sammantaget påvisar resultaten att mindre proteindomäner, så som scaffoldproteiner, kan modifieras till att bli bifunktionella och är därför ett lovande framtida alternativ till nuvarande läkemedelsstrategier.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. , p. 60
Series
TRITA-CBH-FOU ; 2023:30
Keywords [en]
ABD, ADAPT, Autoimmune diseases, Cancer, Half-life extension, HRP, Phage Display, Protein Engineering, Targeted therapy
National Category
Biological Sciences Other Medical Biotechnology
Research subject
Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-327212ISBN: 978-91-8040-637-6 (print)OAI: oai:DiVA.org:kth-327212DiVA, id: diva2:1758374
Public defence
2023-06-15, D3, Lindstedtsvägen 9, via Zoom: https://kth-se.zoom.us/j/67799461063, Stockholm, 09:30 (English)
Opponent
Supervisors
Available from: 2023-05-23 Created: 2023-05-22 Last updated: 2023-05-30Bibliographically approved
List of papers
1. Small Bispecific Affinity Proteins for Simultaneous Target Binding and Albumin-Associated Half-Life Extension
Open this publication in new window or tab >>Small Bispecific Affinity Proteins for Simultaneous Target Binding and Albumin-Associated Half-Life Extension
Show others...
2021 (English)In: Molecular Pharmaceutics, ISSN 1543-8384, E-ISSN 1543-8392, Vol. 18, no 1, p. 328-337Article in journal (Refereed) Published
Abstract [en]

Albumin-binding fusion partners are frequently used as a means for the in vivo half-life extension of small therapeutic molecules that would normally be cleared very rapidly from circulation. However, in applications where small size is key, fusion to an additional molecule can be disadvantageous. Albumin-derived affinity proteins (ADAPTs) are a new type of scaffold proteins based on one of the albumin-binding domains of streptococcal protein G, with engineered binding specificities against numerous targets. Here, we engineered this scaffold further and showed that this domain, as small as 6 kDa, can harbor two distinct binding surfaces and utilize them to interact with two targets simultaneously. These novel ADAPTs were developed to possess affinity toward both serum albumin as well as another clinically relevant target, thus circumventing the need for an albumin-binding fusion partner. To accomplish this, we designed a phage display library and used it to successfully select for single-domain bispecific binders toward a panel of targets: TNFα, prostate-specific antigen (PSA), C-reactive protein (CRP), renin, angiogenin, myeloid-derived growth factor (MYDGF), and insulin. Apart from successfully identifying bispecific binders for all targets, we also demonstrated the formation of the ternary complex consisting of the ADAPT together with albumin and each of the five targets, TNFα, PSA, angiogenin, MYDGF, and insulin. This simultaneous binding of albumin and other targets presents an opportunity to combine the advantages of small molecules with those of larger ones allowing for lower cost of goods and noninvasive administration routes while still maintaining a sufficient in vivo half-life. 

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2021
National Category
Medical Biotechnology
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-289401 (URN)10.1021/acs.molpharmaceut.0c00975 (DOI)000606803900026 ()33259222 (PubMedID)2-s2.0-85097798708 (Scopus ID)
Note

QC 20210212

Available from: 2021-01-28 Created: 2021-01-28 Last updated: 2024-03-15Bibliographically approved
2. A novel TNFα binding ADAPT with increased therapeutic efficiency through multimerization
Open this publication in new window or tab >>A novel TNFα binding ADAPT with increased therapeutic efficiency through multimerization
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Biochemistry Molecular Biology Biological Sciences Medical Biotechnology
Identifiers
urn:nbn:se:kth:diva-327307 (URN)
Note

QC 20230523

Available from: 2023-05-23 Created: 2023-05-23 Last updated: 2025-02-20Bibliographically approved
3. Single domain ADAPT able to target Interleukin-17c with high affinity and albumin simultaneously for potential half-life extension
Open this publication in new window or tab >>Single domain ADAPT able to target Interleukin-17c with high affinity and albumin simultaneously for potential half-life extension
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Biological Sciences Biochemistry Molecular Biology Medical Biotechnology
Identifiers
urn:nbn:se:kth:diva-327308 (URN)
Note

QC 20230523

Available from: 2023-05-23 Created: 2023-05-23 Last updated: 2025-02-20Bibliographically approved
4. A new approach of targeting HER2-positive cancers: Combination of ADAPT6 and HRP-IAA enzyme prodrug therapy
Open this publication in new window or tab >>A new approach of targeting HER2-positive cancers: Combination of ADAPT6 and HRP-IAA enzyme prodrug therapy
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Biological Sciences Biochemistry Molecular Biology Medical Biotechnology
Identifiers
urn:nbn:se:kth:diva-327309 (URN)
Note

QC 20230523

Available from: 2023-05-23 Created: 2023-05-23 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

Kappa(4123 kB)342 downloads
File information
File name FULLTEXT03.pdfFile size 4123 kBChecksum SHA-512
52eb2c24471526ce420baa61d489b65b6276deda21d08ea180fb6a2e213436db59ff1a4ac1519323855b3ef46fdb7cb06217e4452dcca265206545c14eb4d3ed
Type fulltextMimetype application/pdf

Authority records

Wisniewski, Andreas

Search in DiVA

By author/editor
Wisniewski, Andreas
By organisation
Protein Science
Biological SciencesOther Medical Biotechnology

Search outside of DiVA

GoogleGoogle Scholar
Total: 342 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1088 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf