kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ainur: A Framework for Repeatable End-to-End Wireless Edge Computing Testbed Research
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering.ORCID iD: 0000-0002-3383-2335
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control). KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering.
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering.ORCID iD: 0000-0002-2739-5060
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering.ORCID iD: 0000-0001-6682-6559
2022 (English)In: European Wireless Conference, EW 2022, VDE VERLAG GMBH , 2022, p. 139-145Conference paper, Published paper (Refereed)
Abstract [en]

Experimental research on wireless networking in combination with edge and cloud computing has been the subject of explosive interest in the last decade. This development has been driven by the increasing complexity of modern wireless technologies and the extensive softwarization of these through projects such as a Open Radio Access Network (O-RAN). In this context, a number of small- to mid-scale testbeds have emerged, employing a variety of technologies to target a wide array of use-cases and scenarios in the context of novel mobile communication technologies such as 5G and beyond-5G. Little work, however, has yet been devoted to developing a standard framework for wireless testbed automation which is hardwareagnostic and compatible with edge- and cloud-native technologies. Such a solution would simplify the development of new testbeds by completely or partially removing the requirement for custom management and orchestration software. In this paper, we present the first such mostly hardwareagnostic wireless testbed automation framework, Ainur. It is designed to configure, manage, orchestrate, and deploy workloads from an end-to-end perspective. Ainur is built on top of cloudnative technologies such as Docker, and is provided as FOSS to the community through the KTH-EXPECA/Ainur repository on GitHub. We demonstrate the utility of the platform with a series of scenarios, showcasing in particular its flexibility with respect to physical link definition, computation placement, and automation of arbitrarily complex experimental scenarios.

Place, publisher, year, edition, pages
VDE VERLAG GMBH , 2022. p. 139-145
Keywords [en]
Edge Computing, Testbed, Automation, Experimental Research
National Category
Computer Systems
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-327217Scopus ID: 2-s2.0-85172030303OAI: oai:DiVA.org:kth-327217DiVA, id: diva2:1758390
Conference
2022 European Wireless Conference, EW 2022, Dresden, Germany, Sep 19 2022 - Sep 21 2022
Funder
Swedish Foundation for Strategic Research, ITM17–0246
Note

Part of ISBN 9781713865698

QC 20230525

Available from: 2023-05-22 Created: 2023-05-22 Last updated: 2023-10-09Bibliographically approved
In thesis
1. An Emulation-Based Performance Evaluation Methodology for Edge Computing and Latency Sensitive Applications
Open this publication in new window or tab >>An Emulation-Based Performance Evaluation Methodology for Edge Computing and Latency Sensitive Applications
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Cloud Computing, with its globally-accessible nature and virtually unlimited scalability, has revolutionized our daily lives since its widespread adoption in the early 2000s. It allows us to access our documents anywhere, keep in touch with friends, back up photos, and even remotely control our appliances. Despite this, Cloud Computing has limitations when it comes to novel appli- cations requiring real-time processing or low-latencies. Applications such as Cyber-Physical Systems (CPSs) or mobile eXtended Reality (XR), which in turn also have great transformative potential, are unable to run on the Cloud. 

Edge Computing is emerging as a potential solution to these limitations by bringing computation closer to the edge of the network, thereby reducing latency and enabling real-time decision making. The combination of Edge Computing and modern mobile network technologies such as 5G offers potential for massive deployments of latency-sensitive applications. However, scaling and understanding these deployments poses important challenges such the optimization of latency through multiple processing steps and trade-offs in wireless system choice, protocols, hardware, and algorithms. Existing approaches have so far been unsuccessful in capturing the complex effects arising from the interplay between network and compute in these systems. 

This dissertation addresses the challenge of performance evaluation of Edge Computing and the applications enabled by this paradigm with two key contributions to literature. First, a methodological approach to experimentally studying the trade-offs between system responsiveness and resource consumption in latency-sensitive applications such as CPSs and XR is introduced. These applications and systems feature characteristics, such as tight interaction with the physical world and the involvement of humans, that make them challenging to study through simulated approaches or analytical modeling. The approach presented in this thesis involves therefore the emulation of the client-side workload while maintaining the real server-side process and network stack to retain the realism of network and compute effects. 

Next, an exploration of the requirements for accuracy in the emulation is presented. This work discusses the extent to which accuracy in the emulation can open new avenues for optimization of these systems. To this end, the first-ever realistic model of human timings for a particular class of Mobile Augmented Reality (MAR) applications is provided. The model is combined with a mathematical framework to study the potential for optimization in Edge Computing applications. 

Results indicate that the methodology introduced in this work offers advantages over existing methods by improving efficiency, repeatability, and replicability. By fully integrating workload components into the emulated software domain, this methodology reduces complexity while still capturing complex effects of network and compute factors that are challenging to model. This approach represents thus an important contribution to literature, as it consists of a comprehensive method for the performance evaluation of Edge environments, encompassing both the application and the infrastructure. Furthermore, results from the exploration into the implications of realism in the emulation suggest that incorporating enhanced realism in client-side emulation can enable the implementation of optimization approaches that would otherwise be infeasible. In particular, this work highlights the significance of considering human behavior and reactions in addition to system-related metrics and performance optimizations in the context of MAR. 

Abstract [sv]

Cloud Computing, med sin globalt tillgängliga natur och praktiskt taget obegränsade skalbarhet, har revolutionerat våra dagliga liv sedan dess allmänna antagande i början av 2000-talet. Det gör det möjligt för oss att få tillgång till våra dokument var som helst, hålla kontakt med vänner, säkerhetskopiera foton, och fjärrstyra våra hushållsapparater.  Trots detta har Cloud Computing begränsningar när det gäller nya applikationer som kräver realtidsbehandling eller låg latens. Applikationer som cyberfysiska system (engelska Cyber-Physical Systems (CPSs)) eller mobilt utvidgad verklighet (engelska eXtended Reality (XR)), som i sin tur också har stor omvandlingspotential, kan inte köras på molnet.

Edge Computing framstår som en potentiell lösning på dessa begräns-ningar genom att föra beräkningar närmare kanten av nätverket, vilket minskar latensen och möjliggör beslutsfattande i realtid. Kombinationen av Edge Computing och moderna mobila nätverksteknologier som 5G erbjuder potential för massiva utrullningar av latenskänsliga applikationer.  Men att skala och förstå dessa utrullningar utgör viktiga utmaningar såsom optimering av latens genom flera bearbetningssteg och avvägningar i val av trådlösa system, protokoll, hårdvara och algoritmer. Befintliga metoder har hittills inte lyckats fånga de komplexa effekter som uppstår från samspelet mellan nätverk och datorer i dessa system. Denna avhandling tar upp utmaningen med prestationsutvärdering av Edge Computing och applikationerna som möjliggörs av detta paradigm med två viktiga bidrag till litteraturen. Först introduceras ett metodologiskt tillvägagångssätt för att experimentellt studera kompromisserna mellan systemrespons och resursförbrukning i latenskänsliga applikationer såsom CPSs och XR som körs på Edge Computing. Dessa applikationer och system har egenskaper, såsom tät interaktion med den fysiska världen och inblandning av människor, som gör dem utmanande att studera genom simulerade tillvägagångssätt eller analytisk modellering. Den metod som presenteras i denna avhandling innebär därför emulering av klientsidans arbetsbelastning samtidigt som den verkliga serversidans process och nätverksstacken bibehålls för att behålla realismen i nätverks- och datoreffekter.

Därefter presenteras en utforskning av kraven på precision i emuleringen. Detta arbete diskuterar i vilken utsträckning precision i emuleringen kan öppna nya vägar för optimering av dessa system. För detta ändamål tillhandahålls den första realistiska modellen av mänskliga tidsbeteenden för en särkild klass av mobil förstärkt verklighet (engelska Mobile Augmented Reality (MAR)). Modellen kombineras med ett matematiskt ramverk för att studera potentialen för optimering i Edge Computing applikationer.

Resultaten indikerar att den metod som introducerats i detta arbete erbjuder fördelar jämfört med befintliga metoder genom att förbättra effektiviteten, repeterbarheten och replikerbarheten. Genom att helt integrera arbetsbelastningskomponenter i den emulerade mjukvarudomänen, minskar denna metodik komplexiteten samtidigt som den fångar komplexa effekter av nätverks- och beräkningsfaktorer som är utmanande att modellera. Detta tillvägagångssätt representerar således ett viktigt bidrag till litteraturen, eftersom det består av en omfattande metod för prestandautvärdering av Edge Computing-miljöer, som omfattar både applikationen och infrastrukturen. Dessutom tyder resultat från utforskningen av implikationerna av precision i emuleringen att inkorporering av förbättrad precision i klientsideemulering kan möjliggöra implementering av optimeringsmetoder som annars skulle vara omöjliga. Särskilt framhåller detta arbete betydelsen av att överväga mänskligt beteende och reaktioner utöver systemrelaterade mätvärden och prestandaoptimeringar i samband med MAR.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. xii, 85
Series
TRITA-EECS-AVL ; 2023:50
Keywords
Cloud Computing, Edge Computing, Performance Evaluation, Latency-sensitive Applications, Distributed Systems, Emulation, Extended Reality, Cyber-Physical Systems, Networked Control Systems, Wearable Cognitive Assistance
National Category
Computer Systems
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-327222 (URN)978-91-8040-613-0 (ISBN)
Public defence
2023-06-15, https://kth-se.zoom.us/j/63144664642, U61, Brinellvägen 26, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, ITM17–0246
Note

Plats för disputaion ändrad från Q2, Malvinas väg, KTH Campus, Stockholm till U61, Brinellvägen 26, KTH Campus, Stockholm 

QC 20230523

Available from: 2023-05-23 Created: 2023-05-22 Last updated: 2023-06-19Bibliographically approved

Open Access in DiVA

fulltext(1400 kB)77 downloads
File information
File name FULLTEXT01.pdfFile size 1400 kBChecksum SHA-512
a807b7d9b0a7b3b2fe2bf6fbfdad7148e12091e30a757007fc4fbe3ad9533e05469ae11e1dbddd37b97eac04761a08a975b28a8456b009a0045197c146ec04a9
Type fulltextMimetype application/pdf

Other links

ScopusIEEE Xplore

Authority records

Olguín Muñoz, Manuel OsvaldoMostafavi, Seyed SamieMoothedath, Vishnu NarayananGross, James

Search in DiVA

By author/editor
Olguín Muñoz, Manuel OsvaldoMostafavi, Seyed SamieMoothedath, Vishnu NarayananGross, James
By organisation
Information Science and EngineeringDecision and Control Systems (Automatic Control)
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 77 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 242 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf