kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Symmetries of data sets and functoriality of persistent homology
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).ORCID iD: 0000-0002-2665-9001
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).ORCID iD: 0000-0001-5528-5398
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The aim of this article is to describe a new perspective on functoriality ofpersistent homology and explain its intrinsic symmetry that is often overlooked. A dataset for us is a finite collection of functions, called measurements, with a finite domain. Sucha data set might contain internal symmetries which are effectively captured by the actionof a set of the domain endomorphisms. Different choices of the set of endomorphismsencode different symmetries of the data set. We describe various category structureson such enriched data sets and prove some of their properties such as decompositionsand morphism formations. We also describe a data structure, based on coloured directedgraphs, which is convenient to encode the mentioned enrichment. We show that persistenthomology preserves only some aspects of these collection of enriched data sets however notall. In other words persistent homology is not a functor on the entire category of enricheddata sets. Nevertheless we show that persistent homology is functorial locally. We usethe concept of set equivariant operator (SEO) to capture some of the information missedby persistent homology. Moreover, we provide examples and give ways to construct suchSEOs.

National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-327318DOI: 10.48550/arXiv.2002.05972OAI: oai:DiVA.org:kth-327318DiVA, id: diva2:1758784
Note

QC 20230524

Available from: 2023-05-23 Created: 2023-05-23 Last updated: 2023-05-25Bibliographically approved
In thesis
1. Tame representations in Topological Data Analysis: decompositions, invariants and metrics
Open this publication in new window or tab >>Tame representations in Topological Data Analysis: decompositions, invariants and metrics
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is a compilation of results that can be framed within the field of applied topology. The starting point of our study is objects presenting a possibly complex intrinsic geometry. The main goal is then to simplify, without trivializing, the geometric information characterising these objects by choosing an appropriate representation. Thus, besides being simple and compact, the chosen representation should maintain the wealth of features of the initial object.In Topological Data Analysis (TDA), this simplification process can be done by assigning to each geometric object a functor indexed by a suitable poset.The most important fact about these functors is that, under appropriate hypotheses on the geometric object, they are discretisable. Being discretisable in this context means that they can be finitely encoded by a finite poset mapping to the original indexing poset. It is then possible to make one step further by computing invariants for the representations obtained. Desirable features for such invariants are to be effectively computable and suitable to describe metrics on. Comparing them gives, in fact, a good approximation of the comparison of the underlying geometric objects which are our primary interest. 

Paper A studies decompositions of simplicial complexes that are induced by coverings of their vertices. These decompositions are inspired by data analysis where commonly the data is given by a distance space, to which a filtered simplicial complex can be associated. We study how the homotopy type of a decomposed complex differs from the initial one, both for generic and for metric simplicial complexes.

Another model to perform data analysis from a topological perspective is given by the theory of group equivariant nonexpansive operators.In Paper B, we show that such operators form a complementary tool to persistent homology in the context of TDA. We propose a categorical structure incorporating both models and then we study the functoriality of persistence. 

In Paper C we investigate suitable indexing posets for tame functors. The attention is focused on upper semilattices, which are particularly well suited for this purpose. Another class of posets that have similar properties to upper semilattices is the one of realisations, which we introduce here. Their similarities are both combinatorial, in particular concerning a notion of dimension that we introduce, and related to homological algebra for the tame functors indexed by them. In Paper C we also propose a method based on Koszul complexes to compute homological invariants for tame functors indexed either by upper semilattices or realisations. This question is then expanded in Paper D, where we study homological invariants relative to a chosen class of projectives, possibly different to the standard ones. We propose a framework to translate from the relative to the standard setting, where Koszul complexes are available to perform the computations. We also identify an obstruction for such translation to be possible and characterise it for several examples of relative projectives. 

In Paper E we study the geometrical properties of a well-established metric in 2-parameter persistent homology, called the matching distance. Motivated by the need for effectiveness in the computation of such metric, we study its geometric properties.In particular, we show how to take advantage of the differential geometric structure of the underlying objects to understand the properties of the metric. 

In Paper F we study the category of discretisable functors with values in non-negative chain complexes. In this category, we are particularly interested in cofibrant indecomposables, which require a model structure to be defined. Thus, we first identify a new class of posets indexing the functors for which a projective model structure exists and give a characterisation of cofibrant indecomposables there. In the case, the indexing poset is not of this type, we outline a technique to construct arbitrarily complicated cofibrant indecomposables.

Abstract [sv]

Denna avhandling är en sammanställning av resultat inom tillämpad topologi.Utgångspunkten för vår studie är objekt som presenterar en möjligen komplex inneboende geometri.Huvudmålet är då att förenkla den geometriska informationen som kännetecknar dessa objekt, utan att trivialisera den.Således, förutom att vara enkel och kompakt, bör den valda representationen bibehålla rikedomen av egenskaper hos det ursprungliga objektet.I Topologisk Data Analys (TDA) kan denna förenklingsprocess göras genom att tilldela varje geometriskt objekt en funktor indexerad av en lämplig pomängd.Det viktigaste med dessa funktorer är att de är diskretiserbara under lämpliga antaganden om det geometriska objektet.Att vara diskretiserbar i detta sammanhang innebär att de kan ändligt kodas genom en finit pomängd-mappning till den ursprungliga indexeringspomängden.Det är då möjligt att ta ytterligare steg genom att beräkna invarianter av de representationer som erhålls.Önskvärda egenskaper för sådana invarianter är att vara effektivt beräkningsbara ochlämplig att beskriva metriker på.Att jämföra invarianterna ger då en bra approximation av jämföra de underliggande geometriska objekten, som är vårt primära intresse.

Artikel A studerar dekompositioner av simpliciala komplex som induceras av täckningar av deras hörn.Dessa dekompositioner är inspirerade av dataanalys där datan vanligtvis ges av ett metriskt utrymme, till vilket ett filtrerat simplicialt komplex kan associeras.Vi studerar hur homotopitypen för ett nedbrutet komplex skiljer sig från det initiala, både för generiska och för metriska simpliciala komplex.

En annan modell för att utföra dataanalys ur ett topologiskt perspektiv ges av teorin om gruppekvivarianta icke-expansiva operatorer.I Paper B visar vi att sådana operatörer utgör ett komplementärt verktyg till ihållande homologi i samband med TDA.Vi föreslår en kategorisk struktur som inkluderar båda modellerna och sedan studerar vi funktorialiteten av persistens.

I Paper C undersöker vi lämpliga indexeringspositioner för tama funktorer.Fokus ligger på övre semigitter, som är särskilt väl lämpade för detta ändamål.En annan klass av pomängder som har liknande egenskaper som övre semigitter är den av realisationer, som vi introducerar här.Deras likheter är både kombinatoriska, särskilt när det gäller en dimensionsuppfattning som vi introducerar, och relaterade till homologisk algebra för de tama funktorer som indexeras av dem.I Paper C föreslår vi också en metod baserad på Koszul-komplex för att beräkna homologiska invarianter för tama funktorer indexerade antingen med övre semigitter eller realisationer.Denna fråga utökas sedan i Paper D, där vi studerar homologiska invarianter i förhållande till en vald klass av projektiva objekt, möjligen olika de vanliga.Vi föreslår ett ramverk för att översätta från den relativa till standardfallet, där Koszul-komplex är tillgängliga för att utföra beräkningarna.Vi identifierar också ett hinder för att en sådan översättning ska vara möjlig och karakteriserar den för flera exempel på relativa projektiv.

I Paper E studerar vi de geometriska egenskaperna hos en väletablerad metrik i 2-parameter ihållande homologi, kallad matchningsavståndet.Motiverade av behovet av effektivitet vid beräkningen av sådan metrik studerar vi dess geometriska egenskaper.I synnerhet visar vi hur man drar fördel av den differentiella geometriska strukturen hos de underliggande objekten för att förstå metrikens egenskaper.

I Paper F studerar vi kategorin av diskretiserbara funktioner med värden i icke-negativa kedjekomplex.I den här kategorin är vi särskilt intresserade av kofibranter odelbara, som kräver en modellstruktur för att definieras.Sålunda identifierar vi först en ny klass av pomängder som indexerar de funktioner för vilka det finns en projektiv modellstruktur och ger en karakterisering av kofibranter som är odelbara där.Om indexeringsposen inte är av denna typ,vi skisserar en teknik för att konstruera godtyckligt komplicerade kofibranter odelbara.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2023. p. 232
Series
TRITA-SCI-FOU ; 2023:34
Keywords
topological data analysis, tameness, decompositions, invariants, metrics
National Category
Mathematics
Research subject
Mathematics
Identifiers
urn:nbn:se:kth:diva-327362 (URN)978-91-8040-625-3 (ISBN)
Public defence
2023-06-15, F3, Lindstedtsvägen 26 & 28, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 2023-05-25

Available from: 2023-05-25 Created: 2023-05-25 Last updated: 2023-06-13Bibliographically approved

Open Access in DiVA

fulltext(909 kB)178 downloads
File information
File name FULLTEXT01.pdfFile size 909 kBChecksum SHA-512
35e97f860215ab9edfd6120a4c7ffb6bdc69c1d0d8f08e0fd079366b0772cf6b9bd84ef6d1379fe52f391804153e5f5e7c0882ec5a04f56d0e4fd0aa589f02d4
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Chachólski, WojciechTombari, Francesca

Search in DiVA

By author/editor
Chachólski, WojciechTombari, Francesca
By organisation
Mathematics (Div.)Mathematics (Dept.)
Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 178 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 312 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf