kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Towards a Stochastic Operation of Switzerland’s Power Grid
KTH, School of Electrical Engineering and Computer Science (EECS).
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

As Europe’s power production becomes increasingly reliant on intermittent renewable energy sources, uncertainties are likely to arise in power generation plans. Similarly, with the growing prevalence of electric vehicles, electric demand is also becoming more uncertain. These uncertainties in both production and demand can lead to challenges for European power systems. This thesis proposes the use of Monte-Carlo simulations to translate uncertainties in power generation and demand into uncertainties in the power grid. To integrate stochasticity in the forecasts, this thesis separates the multivariate probabilistic forecasting problem by first forecasting the marginal loads individually and probabilistically. Copula theory is then used to integrate spatial correlations and create realistic scenarios. These scenarios serve as inputs for Monte-Carlo simulations to estimate uncertainties in the power system. The methodology is tested using power injection data and the power system model of Switzerland. The results demonstrate that integrating stochasticity in forecasts improves the reliability of the power system. The proposed approach effectively models the uncertainty in both production and demand and provides valuable information for decision-making.

Abstract [sv]

I takt med att Europas elproduktion blir alltmer beroende av intermittenta förnybara energikällor kommer det sannolikt att uppstå osäkerheter i planerna för elproduktion. På samma sätt blir efterfrågan på elektricitet mer osäker i takt med att elfordon blir allt vanligare. Dessa osäkerheter i både produktion och efterfrågan kan leda till utmaningar för de europeiska kraftsystemen. I denna avhandling föreslås att Monte-Carlo-simuleringar används för att omvandla osäkerheter i elproduktion och efterfrågan till osäkerheter i elnätet. För att integrera stokasticitet i prognoserna separerar denna avhandling det multivariata probabilistiska prognosproblemet genom att först individuellt och probabilistiskt prognostisera belastningar. Kopulateori används sedan för att integrera rumsliga korrelationer och skapa realistiska scenarier. Dessa scenarier tjänar som indata för Monte-Carlo-simuleringar för att uppskatta osäkerheterna i kraftsystemet. Metodiken testas med hjälp av data om inmatning av el och med hjälp av Schweiz kraftsystem. Resultaten visar att integrering av stokasticitet i prognoser förbättrar kraftsystemets tillförlitlighet. Den föreslagna metoden modellerar effektivt osäkerheten i både produktion och efterfrågan och ger värdefull information för beslutsfattandet.

Place, publisher, year, edition, pages
2023. , p. 47
Series
TRITA-EECS-EX ; 2023:126
Keywords [en]
Monte-Carlo simulations, probabilistic forecasting, copula theory, power flow analysis
Keywords [sv]
Monte Carlo-simuleringar, probabilistiska prognoser, kopulateori, analys av energiflöden
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-328244OAI: oai:DiVA.org:kth-328244DiVA, id: diva2:1763104
Supervisors
Examiners
Available from: 2023-06-27 Created: 2023-06-06 Last updated: 2023-06-27Bibliographically approved

Open Access in DiVA

fulltext(3000 kB)263 downloads
File information
File name FULLTEXT01.pdfFile size 3000 kBChecksum SHA-512
262459c69bf72ccd538d093ce1d4d9750c52290cedde0b91223dc998eab8dc4881c4e9d85ba07dc6db8c1c11147269c93f212a2d4fb08d177f5b13420ddbf4b6
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 268 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 271 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf