kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A locally corrected multiblob method with hydrodynamically matched grids for the Stokes mobility problem
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).ORCID iD: 0000-0003-0613-1426
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).ORCID iD: 0000-0003-2669-359X
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).ORCID iD: 0000-0002-4290-1670
2023 (English)In: Journal of Computational Physics, ISSN 0021-9991, E-ISSN 1090-2716, Vol. 487, article id 112172Article in journal (Refereed) Published
Abstract [en]

Inexpensive numerical methods are key to enabling simulations of systems of a large number of particles of different shapes in Stokes flow and several approximate methods have been introduced for this purpose. We study the accuracy of the multiblob method for solving the Stokes mobility problem in free space, where the 3D geometry of a particle surface is discretised with spherical blobs and the pair-wise interaction between blobs is described by the RPY-tensor. The paper aims to investigate and improve on the magnitude of the error in the solution velocities of the Stokes mobility problem using a combination of two different techniques: an optimally chosen grid of blobs and a pair-correction inspired by Stokesian dynamics. Different optimisation strategies to determine a grid with a given number of blobs are presented with the aim of matching the hydrodynamic response of a single accurately described ideal particle, alone in the fluid. It is essential to obtain small errors in this self-interaction, as they determine the basic error level in a system of well-separated particles. With an optimised grid, reasonable accuracy can be obtained even with coarse blob-resolutions of the particle surfaces. The error in the self-interaction is however sensitive to the exact choice of grid parameters and simply hand-picking a suitable geometry of blobs can lead to errors several orders of magnitude larger in size. The pair-correction is local and cheap to apply, and reduces the error for moderately separated particles and particles in close proximity. Two different types of geometries are considered: spheres and axisymmetric rods with smooth caps. The error in solutions to mobility problems is quantified for particles of varying inter-particle distances for systems containing a few particles, comparing to an accurate solution based on a second kind BIE-formulation where the quadrature error is controlled by employing quadrature by expansion (QBX).

Place, publisher, year, edition, pages
Elsevier, 2023. Vol. 487, article id 112172
Keywords [en]
Accuracy, Axisymmetry, Grid optimisation, Pair-correction, Rigid multiblob, Stokes flow
National Category
Computational Mathematics
Research subject
Applied and Computational Mathematics, Numerical Analysis
Identifiers
URN: urn:nbn:se:kth:diva-328324DOI: 10.1016/j.jcp.2023.112172ISI: 001122361800001Scopus ID: 2-s2.0-85156216042OAI: oai:DiVA.org:kth-328324DiVA, id: diva2:1763390
Funder
Swedish Research Council, 2019-05206Swedish Research Council, 2016-06119
Note

QC 20230619

Available from: 2023-06-07 Created: 2023-06-07 Last updated: 2025-02-20Bibliographically approved
In thesis
1. Accuracy, efficiency and robustness for rigid particle simulations in Stokes flow
Open this publication in new window or tab >>Accuracy, efficiency and robustness for rigid particle simulations in Stokes flow
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The thesis concerns simulation techniques for systems of nano- to micro-scaled rigid particles immersed in a viscous fluid, ubiquitous in nature and industry. With negligible fluid inertia, the set of PDEs known as the Stokes equations can be used to model the hydrodynamics. For a dynamic study, the PDEs have to be solved at any given instance of time, provided the particle configuration and any non-hydrodynamic interactions. The resulting particle velocities can then be used to update the particle coordinates, and the equations repeatedly solved anew. For any simulation result of a physical system to be reliable, it is crucial to control different error contributions, with two error types here particularly in focus: those related to solving the Stokes equations and those related to the update in time.

The PDEs can be recast as boundary integral equations (BIEs) that hold on the particle surfaces. Hydrodynamic interactions are challenging: they are simultaneously long-ranged and expensive to resolve both in time and space for closely interacting particles. The latter is caused by strong lubrication forces resulting from bodies in relative motion. We approach two alternative and related techniques to BIEs that allow for more cost-effective simulations, namely the rigid multiblob method and the method of fundamental solutions. The former is a regularisation technique that allows for generally shaped particles in large systems, both with and without thermal fluctuations. We make two improvements: the basic error level is tied to the discretisation and set by solving a small optimisation problem off-line for each given particle shape, and the accuracy for closely interacting particles is improved by pair-corrections. With the method of fundamental solutions, we present a technique with linear or close to linear scaling in the number of particles, depending on if a so-called resistance or mobility problem is solved. For circles and spheres, the accuracy can be controlled to a target level independently of the particle separations. This is done by the introduction of a small set of image points for every pair of particles close to contact that well manage to represent lubrication forces.        

In the model, particles can neither touch nor overlap, and our work on time-stepping is tied to the problem of contact avoiding. We develop a new strategy that guarantees contact free simulations in 3D, essential for studying the system of particles over long time spans.   

Controlled accuracy in solutions to the Stokes equations can together with robust timestepping allow for simulations that can complement physical experiments of particle systems for a better understanding of their behaviour, to drive the development in fields such as materials science, biomedical engineering and environmental engineering.

Abstract [sv]

Avhandlingen behandlar simuleringstekniker för system av stela partiklar på nano- till mikroskala i en viskös vätska. Sådana system har en stor spännvidd av tillämpningsområden både i naturen och i industrin. Då vätskans tröghet anses försumbar utgör uppsättningen av partiella differentialekvationer (PDEer) känd som Stokes ekvationer en modell för vätskans fysik. För att studera dynamiska förlopp behöver PDEerna lösas vid varje given tidpunkt, givet partikelkonfigurationen och eventuell extern påverkan mellan partiklarna. De resulterande hastigheterna på partiklarna används för att uppdatera dess positioner och ekvationerna kan sedan lösas på nytt. För att ett simuleringsresultat av ett fysiskt system ska vara tillförlitligt är det viktigt att kontrollera olika felkällor. Vi fokuserar specifikt på de numeriska fel som uppstår när Stokes ekvationer löses approximativt och felet från tidsstegningen, alltså uppdateringen av koordinater över tid.               

Interaktionerna i vätskan är utmanande att hantera: de avtar långsamt med ökande partikelavstånd och är dyra att lösa upp vid nära kontakt. Det sistnämnda är en konsekvens av de starka lubrikationskrafter som relativ rörelse mellan partiklar resulterar i på korta avstånd. PDEerna kan omformuleras som randintegralekvationer på partiklarnas ytor. Vi behandlar två alternativa men relaterade tekniker som möjliggör billigare simuleringar. Den stela multiblob-metoden bygger på regularisering och kan hantera stora system av partiklar med generell geometri. Två förbättringar utvecklas: den basala felnivån relaterar till diskretiseringen av partiklarna och sätts genom att förberäkna lösningen till ett litet optimeringsproblem för varje unik partikeltyp. Noggrannheten för nära interaktion förbättras sedan med hjälp av parkorrektioner. Genom en alternativ metod baserad på fundamentallösningar presenterar vi en ny snabb teknik som skalar linjärt med antalet partiklar. För cirklar och sfärer kan noggrannheten kontrolleras oberoende av partikelavstånd genom att introducera en uppsättning reflektionspunkter för varje par av partiklar nära varandra, som väl kan representera de lubrikationskrafter som uppstår.        

I ett Stokesflöde kan partiklar varken kollidera eller överlappa och vårt arbete relaterat till tidsstegning behandlar kontaktundvikande algoritmer. Vi utvecklar en ny optimeringsbaserad strategi som garanterar att partiklar förblir kontaktfria i 3D. En sådan teknik är nödvändig för att kunna studera partiklar över långa tidsintervall.                

Kontrollerad noggrannhet kan tillsammans med robust tidsstegning möjliggöra att simuleringar kan komplettera fysiska experiment så att en ökad förståelse av partikelsystemen kan leda till utveckling inom exempelvis materialvetenskap, biomedicin och miljövetenskap.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. p. 107
Series
TRITA-SCI-FOU ; 2024:17
Keywords
Stokes flow, rigid particles, accuracy, fundamental solutions, method of images, multiblob, contact avoiding, complementarity problem, barrier method, elliptic PDE, grid optimisation, pair-correction, boundary integral equations, Stokesflöde, noggrannhet, stela partiklar, fundamentallösningar, randintegralekvation, reflektionspunkter, multiblob, kontaktundvikande algoritmer, komplementaritetsproblem, barriärmetod, elliptisk PDE, gridoptimering, parkorrektion
National Category
Computational Mathematics
Research subject
Applied and Computational Mathematics, Numerical Analysis
Identifiers
urn:nbn:se:kth:diva-344768 (URN)978-91-8040-879-0 (ISBN)
Public defence
2024-04-26, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2019-05206Swedish Research Council, 2016-06119
Available from: 2024-03-28 Created: 2024-03-27 Last updated: 2025-03-13Bibliographically approved

Open Access in DiVA

fulltext(7414 kB)123 downloads
File information
File name FULLTEXT01.pdfFile size 7414 kBChecksum SHA-512
9d3f2032778c2decb4e693467c2933f905d3f5f99765c580dd6fb1bc8ffa83547275aadad3c29d4ef68f1b231a530b16d3f3b6de0f4bada7a5f8d4b41b4afe95
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Broms, AnnaSandberg, MattiasTornberg, Anna-Karin

Search in DiVA

By author/editor
Broms, AnnaSandberg, MattiasTornberg, Anna-Karin
By organisation
Mathematics (Dept.)
In the same journal
Journal of Computational Physics
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 124 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 349 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf